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Preface 
 

 

 
In recent years, parallel kinematics mechanisms have attracted a lot of attention from the 

academic and industrial communities due to potential applications not only as robot ma-
nipulators but also as machine tools. Generally, the criteria used to compare the perform-
ance of traditional serial robots and parallel robots are the workspace, the ratio between the 
payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced 
coupling effect between joints, parallel robots bring the benefits of much higher payload-
robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dy-
namic performance. The main drawback with parallel robots is the relatively small work-
space. 

A great deal of research on parallel robots has been carried out worldwide, and a large 
number of parallel mechanism systems have been built for various applications, such as re-
mote handling, machine tools, medical robots, simulators, micro-robots, and humanoid ro-
bots. 

This book opens a window to exceptional research and development work on parallel 
mechanisms contributed by authors from around the world. Through this window the 
reader can get a good view of current parallel robot research and applications. 

The book consists of 23 chapters introducing both basic research and advanced develop-
ments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, 
modelling, simulation and control of parallel robots, and the development of parallel 
mechanisms for special applications. The new algorithms and methods presented by the 
contributors are very effective approaches to solving general problems in design and analy-
sis of parallel robots. 

The goal of the book is to present good examples of parallel kinematics mechanisms and 
thereby, we hope, provide useful information to readers interested in building parallel ro-
bots. 

                                                     
 

                                                                                                                  Editor 
 

 Huapeng Wu 

Institute of Mechatronics and Virtual Engineering 
                                                                        Lappeenranta University of Technology 

Finland 
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Control of Cable Robots for  
Construction Applications 
Alan Lytle, Fred Proctor and Kamel Saidi 

National Institute of Standards and Technology 
United States of America 

1. Introduction 
The Construction Metrology and Automation Group at the National Institute of Standards 
and Technology (NIST) is conducting research to provide standards, methodologies, and 
performance metrics that will assist the development of advanced systems to automate 
construction tasks.  This research includes crane automation, advanced site metrology 
systems, laser-based 3D imaging, calibrated camera networks, construction object 
identification and tracking, and sensor integration and process control from Building 
Information Models. The NIST RoboCrane has factored into much of this research both as a 
robotics test platform and a sensor/target positioning apparatus. This chapter provides a 
brief review of the RoboCrane platform, an explanation of control algorithms including the 
NIST GoMotion controller, and a discussion of crane task decomposition using the Four 
Dimensional/Real-time Control System approach. 

1.1 The NIST RoboCrane 
RoboCrane was first developed by the NIST Manufacturing Engineering Laboratory’s 
(MEL) Intelligent Systems Division (ISD) in the late 1980s as part of a Defense Advanced 
Research Project Agency (DARPA) contract to stabilize crane loads (Albus et al., 1992). The 
basic RoboCrane is a parallel kinematic machine actuated through a cable support system. 
The suspended moveable platform is kinematically constrained by maintaining tension due 
to gravity in all six support cables. The support cables terminate in pairs at three vertices 
attached to an overhead support. This arrangement provides enhanced load stability over 
beyond traditional lift systems and improved control of the position and orientation (pose) 
of the load. The suspended moveable platform and the overhead support typically form two 
opposing equilateral triangles, and are often referred to as the “lower triangle” and “upper 
triangle,” respectively.  
The version of RoboCrane used in this research is the Tetrahedral Robotic Apparatus 
(TETRA). In the TETRA configuration, all winches, amplifiers, and motor controllers are 
located on the moveable platform as opposed to the support structure. The upper triangle 
only provides the three tie points for the cables, allowing the device to be retrofitted to 
existing overhead lift mechanisms. Although the TETRA configuration is presented in this 
chapter, the control algorithms and the Four Dimensional/Real-time Control System 
(4D/RCS), for 3D + time/Real-time Control System, task decomposition are adaptable to 
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many different crane configurations. The functional RoboCrane design can be extended and 
adapted for specialized applications including manufacturing, construction, hazardous 
waste remediation, aircraft paint stripping, and shipbuilding. Figure 1 depicts the 
RoboCrane TETRA configuration (a) and the representative work volume (b). Figure 2 
shows additional retrofit configurations of the RoboCrane platform, and Figure 3 shows 
implementations for shipbuilding (Bostelman et al., 2002) and aircraft maintenance. 
 

 
(a) (b) 

Fig. 1. RoboCrane – TETRA configuration (a); Rendering of the RoboCrane environment. 
The shaded cylinder represents the nominal work volume (b). 

 
Fig. 2. Illustrations of RoboCrane in possible retrofitted configurations: Tower Crane (top), 
Boom Crane (lower left) and Gantry Bridge Crane (lower right). 

1.2 Motivation for current research 
Productivity gains in the U.S. construction sector have not kept pace with other industrial 
sectors such as manufacturing and transportation. These other industries have realized their 
productivity advances primarily through the integration of information, communication, 
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automation, and sensing technologies. The U.S. construction industry lags these other 
sectors in developing and adopting these critical, productivity-enhancing technologies. 
Leading industry groups, such as the Construction Industry Institute (CII), Construction 
Users Roundtable (CURT) and FIATECH, have identified the critical need for fully 
integrating and automating construction processes.  
Robust field-automation on dynamic and cluttered construction sites will require advanced 
capabilities in construction equipment automation, site metrology, 3D imaging, construction 
object identification and tracking, data exchange, site status visualization, and design data 
integration for autonomous system behavior planning. The NIST Construction Metrology 
and Automation Group (CMAG) is conducting research to provide standards, 
methodologies, and performance metrics that will assist the development, integration, and 
evaluation of these technologies. Of particular interest are new technologies and capabilities 
for automated placement of construction components. 
 

  
(a) (b) 

Fig. 3. The NIST Flying Carpet – a platform for ship access in drydocks (a) and the NIST 
Aircraft Maintenance Project (AMP)  – a platform for aircraft access in hangars (b). 

2. RoboCrane kinematics 
From (Albus et al., 1992), given an initial condition where the overhead support and the 
suspended platforms are represented by parallel, equilateral triangles with centers aligned 
along the vertical axis Z, (see Figure 4), the positions of the upper triangle with vertices A, B, 
and C and lower triangle with vertices D, E, and F are expressed as 
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With the positions of the vertices of triangles ABC and DEF as described in equations (1), 
when the lower platform is moved to a new position and orientation (D´E´F´) through a 
translation of 
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u
u
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⎢ ⎥⎣ ⎦

U  (2) 

and a rotation of 

 ( , , ) ( ) ( ) ( )yxz z x yR R R Rγ θ φ φ θ γ= ⋅ ⋅  (3) 
the cable lengths can be expressed as  
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where 
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and ijQ represents an element in the following rotation matrix: 
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Therefore, for any new desired pose of the moving platform described by equations (2) and 
(3), the required cable lengths to achieve that pose can be calculated by the inverse 
kinematic equations shown in equations (4). 
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Fig. 4. Graphical representation of the RoboCrane cable support structure. 

3. Measuring RoboCrane pose 
The controller's estimate of the actual pose of RoboCrane differs from the actual pose due to 
several sources of error. Position feedback is provided through motor encoders that measure 
rotational position. Cable length is computed by multiplying the rotational position by the 
winch drum radius, with a suitable scale factor and offset. 
However, the winch drum radius is not constant, but varies depending on the amount of 
cable that has already been wrapped around the drum, increasing its radius. It is possible to 
keep track of this and change the radius continually, by building a table that relates motor 
rotational position with effective radius.  
Another source of error is that the cable length is affected by sag due to gravity. This sag 
depends on the pose of the platform and its load. Compensation can be achieved using an 
iterative process that begins with the nominal cable lengths, computes the platform pose 
using the forward kinematics equations, and determines the tensions on each of the cables 
using the transpose of the Jacobian matrix and the weight of the platform. The tensions can 
be used to generate the actual catenary curve of the cable, taking its nominal length as the 
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length of the hanging catenary curve. This process is repeated iteratively, with the nominal 
cable length as the fixed arc length of the catenary, and the chord between its endpoints as 
the continually revised length used by the forward kinematics.  
Calibration errors in the mounting points of the ends of the cables further contribute to pose 
error. In practice these are not fixed points, but vary as the angles of the cables change the 
contact point to the pulleys or eye bolts that affix the ends. Even if these contact points were 
constant, their actual locations can be difficult to measure with precision, given their large 
displacement over a typical work volume.  
Given these many sources of error, it is desirable to be able to measure the pose of the 
platform directly. There are many commercial systems for this purpose. An initial approach 
to external measurement implemented on RoboCrane uses a laser-based, large-scale, site 
measurement system (SMS). 

3.1 The site measurement system (SMS) 
A laser-based site measurement system (SMS) is used to track RoboCrane’s pose and to 
measure object locations within the work volume. The SMS uses stationary, active-beacon 
laser transmitters and mobile receivers to provide millimeter-level position data at an 
update rate of approximately 20 Hz. This technology was chosen based upon a combination 
of factors including indoor/outdoor operation, accuracy, update-rate, and support for 
multiple receivers. 
Each SMS transmitter emits two rotating, fanned laser beams and a timing pulse. Elevation 
is calculated from the time difference between fanned beam strikes. Azimuth is referenced 
from the timing pulse. The field of view of each transmitter is approximately 290° in 
azimuth and ± 30° in elevation/declination.   
Similar to GPS, the SMS does not restrict the number of receivers. Line-of-sight to at least 
two transmitters must be maintained by each receiver in order to calculate that receiver’s 
position. The optical receivers each track up to four transmitters and wirelessly transmit 
timing information to a base computer for position calculation.  
For tracking RoboCrane’s pose, four laser transmitters are positioned and calibrated on the 
work volume perimeter, and three SMS receivers are mounted on RoboCrane near the 
vertices of the lower triangle. The receiver locations are registered to the manipulator during 
an initial setup process in the local SMS coordinate frame. A transmitter and an optical 
receiver are shown in Figure 5. The SMS receivers mounted on RoboCrane are shown in 
Figure 6.  
 

  
(a) (b) 

Fig. 5. An SMS laser transmitter (a) and an SMS optical receiver (b). 
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The drawback of these systems is the added cost, and the need to maintain lines-of-sight 
between the platform and transmitters, potentially interfering with intended use. The 
benefits of accurate pose measurement are often significant enough to warrant their use.  
In the first implementation of the SMS to track RoboCrane, position estimates were obtained 
at several stopping points during RoboCrane’s trajectory, and these estimates were used as 
coarse correction factors for the encoder positions.  Current work is focused on a dynamic 
tracking approach to eliminate the need for stopping points. 
 

 
Fig. 6. The SMS on RoboCrane showing a close-up view of one of the three receivers. 

3.2 Dynamic pose measurement 
A commanded pose will generally result in a different actual pose due to various sources of 
system error such as those discussed previously. This relationship is depicted as 

 → →N X A  (7) 

or, in matrix form,  

 =NX A  (8) 

where N  is the commanded pose, X  is the perturbation that includes all the sources of 
error, and A  is the actual pose that results. The effects of X  can be cancelled by 
commanding an adjusted pose, ∗N , where 

 ∗ = -1N NX  (9) 

Using the adjusted pose allows us to achieve the original desired pose since 

 ∗ =N X N  (10) 

In general, most of the sources of error are unknown and variable, so computing -1X apriori 
is not feasible. However, -1X can be estimated by comparing a previously commanded 
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adjusted pose, ∗N , with the resulting actual pose, ∗A , as measured by the SMS. For time 
step, (i-1) 

 * *
1 1 1i i i− − −=N X A  (11) 

And the inverse of 1i−X  can be calculated as 

 ( ) ( ) 1* *
1 1 1i i i

−

− − −=
-1

X A N  (12) 

For the current time step, (i), the commanded adjusted pose can be calculated as 

 ( )*
1i i i−=

-1
N N X  (13) 

where iN is the desired pose for the current time step and 1i−X is the perturbation from the 
previous time step. Therefore, 

 *
i i i≈N X N  (14) 

If the platform is moving, then the cancellation is not perfect, since we are trying to cancel 
this time step's unknown perturbation transform with the inverse from the previous time 
step, which will be slightly different. If the platform is stationary, the two converge and the 
cancellation becomes perfect.  
Platform motion has a more pronounced practical effect due to measurement latency for A . 
When computing -1X , it is important that the N and A poses are synchronized. If the 
measured A pose lags the nominal N pose, then the compensation will have the effect of 
leading the motion. When speed slows, this leading will become an overshoot, and the 
platform will oscillate.  
In the presence of measurement latency, one solution is to only compute the compensating 
transform -1X when the platform is stationary. With this method, the platform is moved into 
an area of interest, held stationary for at least the latency period, and -1X is computed. From 
that point, iteration is suppressed, and the compensating transform is constant. As the 
platform moves away from the compensation point, its accuracy diminishes.  
If the latency is constant and can be measured, a solution is to keep a time history of 
nominal poses and their associated inverse transforms, and look back into this history by the 
amount of latency to associate a pair N and -1X to the latent A measurement. If the 
measurements can be timestamped, then the same technique can be supplemented with 
timestamps to make the association. This technique can be used in the presence of variable 
measurement latency.  
Controller latency also has an effect on the accuracy of the compensating transform. Figure 7 
shows the magnitude of the translation portion of the compensating transform during tests 
with four different trajectory cycle times. In each test, the platform speed varied from 
1 cm/s to 10 cm/s. These tests were done with a simulated measurement system that 
simulates actual position from the servo position run through the forward kinematics. In 
this case, the compensating transform should be small, and in fact it goes to zero as the 
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motion pauses between each speed setting. It is apparent from these figures that as the 
platform speed increases, the magnitude of the compensating transform increases, as is 
expected from servo lag. It is also apparent that as cycle time increases, so does the 
magnitude of the transform. This is due to the uncertainty between when nominal position 
is registered by the controller, and when it is read out some fraction of a period later.  
 

 

 
 

Fig. 7. Compensating transform magnitude (translation only) for four different trajectory 
cycle times. As the trajectory cycle time increases, the magnitude increases, and becomes 
more noisy as a result of the increased uncertainty in the latency between control output and 
compensation. (Note: Figures intended as qualitative examples of cycle time effects.) 

Whenever a new -1X transform is written to the controller, it has the potential to cause a 
jump in motion. To prevent this, transforms are “walked in” according to speed and 
acceleration limits. A large change in the transform will appear as a relatively quick but 
controlled move to the new, more accurate position. The effect of compensation is illustrated 
in Figure 8. The square path in the lower left of the figure is the uncompensated path, which 
is offset and slightly skewed from the ideal path due to kinematic miscalibration. Shortly 
after the second pass around the square path, compensation was turned on and its effects 
walked in over several seconds. This interval appears as the two line segments connecting 
the square paths. The square path in the upper right is the compensated path, whose 
adherence to the nominal edges at 0 cm and 10 cm is quite good.  
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Fig. 8. Effect of in-process compensation The lower left square path is uncompensated and 
differs due to kinematic miscalibration. The upper right path is compensated. The 
connecting path results applying the compensation over time to avoid impulsive jumps. 

When compensation is turned off, the last compensating transform remains in use. As the 
platform moves away from the point at which this transform was calculated, the 
compensation becomes less accurate. This is shown in Figure 9. 
 

 
Fig. 9. Trajectory drift after cancelling in-process compensation.  The correction was made at 
location (0,0), and no further updates were performed. 

4. RoboCrane control 
4.1 GoMotion controller description 
The RoboCrane controller is a two-level hierarchy. The bottom level is servo control, which 
takes position setpoints for the cable lengths at a period of 1 millisecond, and runs a 
proportional-integral-derivative (PID) controller using feedback from encoders mounted on 
the motors to generate drive signals. The top level is trajectory planning, which takes 
desired goal poses and plans smooth Cartesian motion along a linear path, taking into 
account speed, acceleration and jerk constraints. The trajectory planner executes at a period 
of 10 milliseconds, calculating intermediate poses that are run through the inverse kinematic 
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equations to generate cable lengths sent to the servo controllers. Joint mode control is also 
possible, with goals specified in terms of desired cable lengths. The inverse kinematics are 
not needed in this case.  
Servo control is divided among six similar modules, each running PID control with 
extensions that handle velocity and acceleration feedforward terms, output biasing, 
deadband and saturation detection for anti-windup of integral gain. A software application 
programming interface (API) localizes how the servo modules connect to specific hardware 
such as commercial input/output boards for encoder feedback and digital-to-analog 
conversion, open-loop stepper motors or distributed input/output. The servo modules run 
periodically at 10 times the period of the trajectory planner. Interpolation between setpoints 
sent by the trajectory planner is done using either linear, cubic or quintic polynomial 
interpolation of the setpoint over time, depending on application needs.  
Trajectory planning is done following S-curve velocity profiling with specified velocity, 
acceleration and jerk. S-curve profiling has the advantage of bounding jerk, when compared 
with trapezoidal velocity profiling with abrupt changes in acceleration. S-curve profiling has 
seven motion phases, as shown in Figure 10.  
 

 
Fig. 10. S-curve velocity profile. 

Here, 3v , 1a  and 0j are the specific maximum velocity, acceleration and jerk, respectively. At 
each trajectory time step, the distance increment is computed as the area under the S-curve 
for that time interval.  
In joint position control mode (individual cable actuation), trajectory planning is done for 
each cable independently. Given a desired target cable length, the S-curve profile is 
computed and distances are computed each trajectory period. These distances are sent to the 
servo module for that joint for interpolation and tracking. Coordinated joint position control 
is possible, in which a set of six target cable lengths comprises the goal. Six trajectory 
profiles are computed, and five of the six are scaled so that their final arrival time matches 
the time of the longest move.  
In Cartesian position control mode, motion control is split into translation and rotation 
vectors. The translation vector is a three-element vector with X, Y and Z components 
pointing to the target location, with associated velocity, acceleration and jerk along the path. 
The rotation vector is a three-element vector about which the overall rotation from the 
current orientation to the target orientation takes place. The magnitude of this vector is the 
amount of rotation. Angular velocity, acceleration and jerk are used to generate a profile for 
this portion of the move. One of the two profiles is scaled to match the time of the longer of 
the two so that the translation and rotation arrive at the same time. At each trajectory cycle, 
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the translation and rotation are computed, run through the inverse kinematics equations, 
and sent as a set of target cable lengths for interpolation and tracking by the servo modules.  
Motion along circular arcs is also supported. Rotational motion is planned as before. 
Translational motion is planned along the arc, where the distance under the S-curve profile 
is the distance along the arc. Aside from this geometric distinction, circular motion is the 
same as linear motion.  

4.2 Initialization 
When the controller begins executing, it assumes that the cable length measurements are 
uncalibrated. Cable length limits are invalid, as is any notion of the Cartesian pose of the 
platform or its limits. The controller allows individual cables to be moved independently, 
but inhibits Cartesian motion and cable length limit checking. Before any of these can take 
place, the platform must be “homed” to establish the offset between the initial arbitrary 
measurement of cable length (typically zero) and its true length. 
In systems that lack a way to absolutely measure either cable lengths or Cartesian pose at 
startup, a homing procedure is used. There are several variations in this method. In one, 
fiducial marks are made on each cable, which when aligned with an associated mark on the 
platform denote that the cable is at a known length. The operator must manually jog each 
cable to align the marks, and indicate that the home condition has been met. The controller 
then computes an offset that is added to the raw feedback from the motor encoder to yield 
the known length value.  
Another homing technique is to bring the platform to a known Cartesian location, such as 
level and oriented properly atop a mark on the floor. This requires manually moving the 
platform by adjusting cable lengths, which is unintuitive. In practice, the operator moves 
each cable so that the platform is relatively close to the home location, and falsely indicates 
that the cables are homed. Cartesian motion is then enabled, and the operator moves in 
Cartesian space for the final alignment. During this falsely-homed period, the platform 
motion will be skewed, but is usually close enough for intuitive positioning. 
Homing is a time-consuming manual procedure. If the platform's Cartesian pose can be 
measured directly, such as with the SMS, then homing is not necessary. In this case, the 
controller is provided with the actual Cartesian position, which it runs through the inverse 
kinematics to get the cable lengths. The difference between these computed cable lengths 
and the uncalibrated lengths from the motor encoders is the offset used to calibrate the 
feedback. 

4.3 Control modes 
The RoboCrane controller supports various control modes. Teleoperation allows an operator 
to drive the platform directly, using a keyboard, mouse or joystick. Automatic control 
allows the execution of scripted trajectories. 
Teleoperated Control: In teleoperated control, the operator uses a convenient input device, 
such as a keyboard, mouse or joystick, to move the platform directly. Typically a joystick is 
used, since it is most intuitive. This can be performed in either joint (i.e., cable lengths) or 
Cartesian space. With cable lengths, the operator selects a cable, and shortens or lengthens 
the cable according to the deflection of the joystick. If the controller has been homed, the 
Cartesian position is continually updated using the forward kinematics. Cable length 
motion is typically used only when homing the platform, since it results in unintuitive 
platform motion.  
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In Cartesian space, the operator uses the joystick to drive the platform in any of the X, Y and 
Z directions, or to rotate about these directions. The controller supports two reference 
frames: the world frame, with coordinates affixed to the unmoving ground; and the 
platform (or tool) frame, with coordinates affixed to the moving platform. World mode is 
typically used to position the platform near an area of interest, or to drive it along features 
in the world, such as the floor or walls. Tool mode is used to position the platform by 
driving it along axes aligned with grippers or tooling, so that approaches and departures 
can be made along arbitrary directions. The controller supports the definition of arbitrary 
tool coordinate systems, so that one tool can be dropped off, another picked up, and motion 
with respect to the new tool axes can be accomplished.  
In world mode, Cartesian speeds from the joystick are converted into cable speeds using the 
inverse Jacobian. Given a desired Cartesian velocity of RoboCrane, V , and using the inverse 
Jacobian1 matrix, -1J , the cable speed vector, �L , can be calculated as  

 =� -1L J V  (15) 

where �L  is the 6x1 cable speed matrix, -1J is the 6x6 inverse Jacobian transform matrix, and 
V is the 6x1 Cartesian velocity vector (Tsai, 1999). The calculated cable speeds are 
transformed into winch motor rotation rates that are sent to the winches. Each motor 
encoder keeps track of the number of motor shaft revolutions and that number is directly 
related to cable length. The six cable lengths are then used to calculate a new Jacobian 
matrix, which is used the next time velocity commands are sent. 
Since the inverse Jacobian matrix is calculated based on the instantaneous Cartesian pose of 
RoboCrane, the initial pose of RoboCrane must be known. This initial pose can be calculated 
by directly measuring the cable lengths and performing the forward kinematic calculations, 
or by placing RoboCrane in a predefined home pose at the beginning of each teleoperation 
session and initializing the cable lengths to preset values.  
Speed changes are clamped to lie within acceleration limits, so that abrupt changes in 
joystick position do not impart abrupt changes in motor speed. Cartesian position and 
orientation limits are applied, so that attempts to drive the platform outside a limit will be 
inhibited. 
Automatic Control: With automatic control, motions in either cable or Cartesian space can 
be scripted in programs. These programs can be written by hand, or generated by off-line 
programming systems that can automate the generation of complex tasks throughout a large 
work volume. This is accomplished through a third level in the hierarchy, the Job Cell level. 
This level interfaces to the motion controller using the same interface as the teleoperation 
application, but sending discrete moves instead of teleoperation speeds.  
There are two basic modes of automatic control, either in cable space or in Cartesian space. 
Cable space motions are less common, and would be used to drive individual cables during 
maintenance activities. Cartesian space motions are primarily used in applications. As with 

                                                 
1 The Jacobian transform (or simply Jacobian), J relates the velocities of the joints of a 
manipulator to the velocities (translational and rotational) of its end-effector,  �x = J �q , 
where �q and  �x are the velocity vectors of the joints and end-effector, respectively (Tsai, 
1999). 
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Cartesian teleoperation, programed Cartesian moves can be done either with respect to the 
world frame or the tool frame. A representative program is 
 

 # rotate to 30-degree yaw at 1, -2, 3 
 movew 1 -2.0 3.0 0 0 30.0 
 # move along the tool's Y axis 10 cm 
 movet 0 0.1 0 0 0 0 
 

World motions are absolute (although they can be incremental), while tool motions are 
strictly incremental, since the tool origin moves along with the tool. 

5. High level control 
5.1 4D/RCS overview 
The NIST RCS (Albus, 1992) methodology describes how to build control systems using a 
hierarchy of cyclically executing control modules.  In (Bostelman et al., 1996), RCS was 
applied to a RoboCrane implementation.. At the lowest level of the hierarchy, each control 
module processes input from sensors, builds a world model, and generates outputs to 
actuators in response to commands from its supervisory control module. These functional 
components of a control module are termed sensory processing (SP), world modeling (WM) 
and behavior generation (BG), respectively. The servo control of a motor is a common 
example of a control module at the lowest level. Here, the sensor may be a motor shaft 
position encoder, the actuator is the motor shaft, the command is a desired setpoint for the 
shaft position, and the behavior may be the execution of a simple PID control algorithm. The 
SP function may simply be reading and scaling input from the encoder device, and the WM 
function may be maintaining a filtered estimate of the shaft position. Typical cycle times for 
such control modules are on the order of a millisecond.  
One or more of these lowest-level control modules may be subordinate to a control module 
at the next level up in the hierarchy, termed the supervisor. In our example, the SP function 
at this level may simply provide each motor shaft position to the WM function, which 
would compute the overall position and orientation of the device’s controlled point, perhaps 
the tool on a robot. The BG function may smoothly transform goal points to motor 
trajectories based on speed, acceleration and jerk. Here, goal points may arrive at variable 
intervals from the higher-level supervisor, one that may be reading them from a program 
file. Cycle times increase by about an order of magnitude for control modules that are one 
level higher in the hierarchy. For this trajectory planner, the cycle time would be about 10 
ms.  
A full RCS hierarchy would include additional lower-level control modules for individual 
tools, and control modules at higher levels of the hierarchy may coordinate the actions of 
many robots and auxiliary equipment. RCS has found its richest application in the area of 
mobile robotics. Here the SP functions include not just motors but cameras, 3D imaging 
systems (e.g. laser scanner), GPS and other navigation sensors. WM functions build maps of 
various resolutions and maintain symbolic representations of the world. BG functions 
reason on the symbolic representations, planning optimal paths around known features and 
reacting to sensed obstacles.  
An RCS design differs from functional design or object-oriented design in that it begins with 
a task analysis of the system to be controlled. Here the designer identifies the tasks to be 
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performed at the top level, and then breaks each task down into subtasks that are performed 
by the subordinates. Usually the designer does not have complete freedom to determine the 
task breakdown, as some of the components that make up the system may have been reused 
from prior projects. In this case, the tasks must be expressed in terms of the available 
subtasks. Task analyses are helped enormously by considering scenarios that include system 
startup, shutdown, normal use and changes between various modes of operation. Often 
these scenarios bring to light the need for tasks that are not apparent from the original 
conception of the system. 
An example of a comprehensive task analysis for the design of an automatic road vehicle 
controller can be found in (Barbera et al., 2004). The designers considered hundreds of 
scenarios listed in a manual of military driving, including lane changes, passing and 
intersection rules. What is made obvious by this analysis is that the top- and bottom-level 
tasks are relatively simple, while the tasks in the middle are the most complex. Other 
examples of task analyses for unmanned vehicle systems can be found in the latest version 
of RCS (known as 4D/RCS) (Albus et al., 2002). 
Implementation of RCS control modules is done conceptually using state tables, which can 
then be programmed in any general-purpose computer language using conditionals or 
switch statements. The NIST RCS Library documents the software tools available for 
programming in C++ or Java. A detailed handbook (Gazi, 2001) covers the entire RCS 
analysis, design and programming using several examples and the RCS Library tools.  

5.2 Crane task decomposition 
Designing a new RCS-based controller for RoboCrane began by first identifying the 
requirements of the controller. The overall goal of the RoboCrane controller was defined as 
follows: to plan and execute tasks required for automated construction-material handling 
and/or building construction. 
Controller Requirements: In order to accomplish its goal the RoboCrane controller needed to 
provide the following: 
• Autonomous, semi-automated, and teleoperated modes of operation  
• RoboCrane tool-point (i.e., platform) position and velocity control modes 
• RoboCrane tool-point motion in joint, Cartesian, as well as other user-definable 

coordinate systems 
• Cross-platform code portability (but still dependent on the real-time operating system) 
• Adaptability to other robot/crane hardware 
• Sensor-based collision avoidance  
System Scope: Although the motivation for developing a controller was to be able to use it 
to control various cable-driven robots and to accomplish various tasks, the initial scope of 
the controller was limited to the following: 
• Smooth and stable motion of the NIST RoboCrane 
• Perform a steel beam pick and place task 
• Construct a structure whose shape is limited by RoboCrane’s current range of motion 
• Connect the beam to the holder using drop-in connectors 
• Carry beams whose size falls within RoboCrane’s current load-carrying capabilities 
• Communicate to RoboCrane using the current field bus architecture 
• Operate under a real-time Linux operating system 
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• Use the built-in incremental winch motor encoders as well as the laser-based 
positioning system to determine RoboCrane’s pose, but include the ability to add other 
sensors for pose determination in the future 

• Acquire the steel beam and holder poses using the current laser-based positioning 
system 

Task Decomposition: The next step in the RCS controller design process is to conduct a task 
decomposition of the controller’s overall goal. RoboCrane’s overall goal was divided into 
several subtasks, which were consequently also broken down into smaller tasks. This 
process continued until the lowest level tasks involved sending commands to the 
RoboCrane hardware (e.g., setting motor voltages). This is the lowest level of control that 
the controller can provide. 
Figure 11 shows a sample task tree diagram resulting from the task decomposition process. 
In this figure the physical task of picking and placing a steel beam (as part of a steel erection 
sequence) is decomposed into 3 levels of subtasks. In keeping with the RCS architecture, 
each sublevel is responsible for planning and executing a smaller portion of the overall pick-
and-place task. The lowest level is responsible for maintaining a commanded joint (or 
motor) velocity (or position). The next level up is responsible for generating and executing a 
series of n waypoints (i.e., positions and orientations in time) for the RoboCrane platform. 
The next higher level generates and executes the necessary commands to accomplish a 
segment of the pick-and-place operation. Finally, the highest level in Figure 11 is responsible 
for coordinating the execution of the segments that make up the overall pick-and-place task. 
This highest level also receives commands from higher levels (not shown in Figure 11) 
which coordinate the pick-and-place task with other tasks such as attaching a beam to a 
structure, picking and placing a column, and etc. 
 

 
Fig. 11. Task tree diagram for the pick-and-place next beam task. 

In addition to the physical tasks represented in the task tree diagram of Figure 11, other 
non-physical tasks are required in order to accomplish a pick-and-place operation. These 
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include tasks such as detecting obstacles, calculating collision free paths, etc. These tasks 
were also captured and broken down into 3 levels of subtasks, but are not included in 
Figure 11 
State Tables: Following the task decomposition process the commands going into and out of 
each task, that are represented in the task tree diagram of Figure 11, are listed in a state table 
format. A state table (or state transition table) describes all possible input and output states 
(and actions) of a finite state machine. Table 1 shows a state table for the pick and place next 
beam task. The command that starts the execution of this task has the same name as the task 
itself and is also the title of the state table. The state table columns (from left to right) 
represent the input state numbers, the conditions that must be met to change the state, the 
output state numbers, and the output commands that are sent to lower level tasks, 
respectively. 
When the pick and place next beam command is issued by a higher level task, the controller 
examines the state table shown in Table 1. The initial state of the pick and place next beam 
task is S0 and the first condition that is checked is whether the received command is new. If 
it is a new command, the state of the task is changed to S1 and the status of the task is 
changed to indicate that it is executing. 
 

Pick and Place Next Beam 
S0 New Command S1 Hold – Status=Executing 
S1 Conditions Good to Move to Pre-Pick Pose S2 Move to Pre-Pick Pose 
S1 Timed out S0 Hold – Status=Error 
S2 Conditions Good to Move to Pick Pose S3 Move to Pick Pose 
S3 Conditions Good to Grasp S4 Grasp Beam 
S4 Conditions Good to Pre-Load Crane S5 Pre-Load Crane 
S5 Conditions Good to Move to Pre-Place Pose S6 Move to Pre-Place Pose 
S6 Conditions Good to Move to Place Pose S7 Move to Place Pose 
S7 Conditions Good to Unload Crane S8 Unload Crane 
S8 Conditions Good to Release S9 Release Beam 
S9 Conditions Good to Move to Post Place Pose S10 Move to Post Place Pose 
S10 At Post Place Pose S0 Hold - Status=Done 

Table 1. State table for the pick and place next beam task. 

The next time the above state table is checked (i.e., during the next execution cycle of its 
corresponding control module) the new state of the task is S1, and the conditions that must 
be met are whether it is acceptable to move RoboCrane to the beam’s pre-pick pose, or 
whether enough time has elapsed that something must be wrong. There may be one or more 
sub-conditions that must be satisfied in order to determine whether it is acceptable to 
proceed, but these can be aggregated into one description in the state table. If the conditions 
are met, the state of the task is changed to S2 and the command to move to the pre-pick pose 
is sent to a lower-level task. If time has expired, the state of the task is changed to S0 and an 
error is reported. Each lower level task that receives an output command reports its status 
back to the higher level task that issued the command until it finishes executing or 
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encounters an error. This process continues until all of the commands in the state table have 
been executed, at which point the pick and place next beam task is considered completed 
and the state of the table is reset to S0. For brevity, only a single timeout condition is shown 
in Table 1. In practice, numerous checks of this sort are made throughout the state table. 
Once the state tables for all of the tasks identified through the task decomposition process 
are completed they are organized into control modules as described next and implemented 
in software following the RCS guidelines. 
Control Modules: As indicated in the prior RCS description, the commands in the task tree 
diagram of Figure 11 are organized into multiple levels. Each level’s tasks may be grouped 
together into one or more modules responsible for coordinating and executing the tasks 
within it. Some of the critical modules (such as the servo algorithms) run as real-time 
processes within the operating system, while other less critical modules (such as long term 
path planning) run as non-deterministic processes. 
Figure 12 shows the control architecture for the RoboCrane controller. The four levels above 
the software/hardware demarcation line in Figure 12 correspond to the four levels of 
Figure 11. The tasks have been grouped into the control modules shown. For example, the 
bottom level tasks of Figure 11 are grouped into the six “Servo” modules in Figure 12.  
 

 
Fig. 12. RoboCrane controller architecture diagram. 
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Each of these modules are responsible for executing a servo algorithm which accepts the 
actual and desired positions (or velocity) of a winch motor as inputs and calculates a 
command voltage which maintains the desired position (or velocity). An alternate 
configuration would be to group the six servo modules into one. 
Figure 12 also shows that the RoboCrane controller is part of a larger control architecture 
which includes four higher-level modules. For example, at the level above the RoboCrane 
controller would be a Pick-and-Place Manager that would actually command RoboCrane to 
perform the pick-and-place operation. The commands sent down by each module to a 
lower-level module are shown in the light gray boxes on the right. Some of the functions (or 
non-physical tasks) that each module performs are also shown in the light gray boxes on the 
left. The control modules above the Pick-and-Place Manager are also included in the figure. 
Finally, Figure 12 also includes modules for controlling the 3D imaging systems. These 
modules are responsible for coordinating the sensor orientations with the RoboCrane 
platform’s motion in order to maintain a desired part of RoboCrane’s environment within 
the combined sensors’ field of view. 

6. Conclusion 
This chapter presented new research developments at NIST in control algorithms and 
controller design for parallel robots applied to Construction applications. In particular, this 
research focused on the NIST RoboCrane platform for automated placement of construction 
components. This work was the first to demonstrate the use of a laser-based site 
measurement system for 6 degree-of-freedom tracking of a robotic crane, and presented new 
methods for incorporating pose estimation errors in a compensation transform for the NIST 
GoMotion controller.  Finally, this work presented task decomposition approaches for 
analyzing and automating construction crane operations based on a NIST 4D/RCS 
approach. 
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1. Introduction 
The information provided by robot manufacturers regarding the dynamic parameters of 
robotic systems (the inertial properties of the links and friction parameters at the kinematic 
joints) is limited and even nonexistent. For instance, friction parameters are generally not 
provided. Thus, it is necessary to develop efficient procedures for their measurement. The 
direct measurement of these parameters is not practical since it would imply disassembling 
the robot. On the other hand, obtaining these parameters from the CAD models has the 
disadvantage that some parts can not be modeled in full detail and parameters that depend 
on operational conditions, like friction, can not be determined. For these reasons, parameters 
identification has turned out to be a widely accepted technique for determining the dynamic 
parameters. This chapter provides an overview of parameters identification processes 
applied to parallel manipulators. Practical implementation issues are also considered. In 
addition, an approach that considers the identification problem as a nonlinear constrained 
optimization problem is presented. Moreover, an evaluation of the accuracy of the solution 
of parameters is also addressed.  
The importance of inertial and friction parameters lies in their application in most of the 
recent literature for advanced model-based control algorithms. The accuracy of dynamic 
parameters plays an important role in the precision, performance, stability and robustness of 
these control algorithms (Khalil & Dombre, 2002). On the other hand, they are important in 
dynamic simulation. It is known that the validation of the direct dynamic problem depends 
considerably on the precision of the dynamic parameters of the mechanical system. An 
accurately modeled robot permits the substitution of the real mechanical system by a virtual 
one thus avoiding the expensive experimental tests used to adjust the operational 
parameters for this system (Hiller et al., 2002). Additionally, another important field in 
which accurate knowledge of the dynamic parameters is needed is in path planning 
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algorithms that take into account robot dynamics. The predicted forces depend greatly on 
the accuracy of the estimated inertial and friction parameters. Hence, inaccurate estimates of 
the dynamic parameters may lead to an overloaded robot (dynamically or statically), which 
is the case in approximately 50% of  industrial robots (Swevers et al., 2002). 
Initially, dynamic parameter identification procedures for estimating the dynamic 
parameters of open loop mechanical structures were developed in the middles eighties 
(Khosla & Kanade, 1985; Atkeson et al., 1986; Olsen & Bekey, 1986; Gautier & Khalil, 1988). 
Since then, they have been widely used and several contributions to serial robot dynamics 
application control and simulation have been made. 
Identification procedures can be classified into two main groups: indirect and direct 
approaches. On the one hand, indirect procedures act sequentially in several stops. In each  
step, parameters of a different nature (basically friction and some inertial terms) are 
identified by means of specifically designed experiments. On the other hand, in the direct 
approach, all the parameters are identified in the same stage. A detailed comparison 
between the direct and the indirect approaches, applied to a PUMA industrial robot, can be 
found in Benimeli et al. (2006). The indirect approach has the disadvantage that errors due 
to the noise in the measured data are being accumulated throughout the different stages 
(Khalil & Dombre, 2002). Moreover, it is difficult to maintain the working conditions 
constant not only throughout these stages, but also within the same one. 
For parallel manipulators, the direct approach has been applied (Renaud et al., 1993; 
Guegan et al., 2003; Farhat et al., 2008). Meanwhile, the indirect approach has been proposed 
(Grotjahn et al., 2004; Abdellatif et al., 2007). However, apart from error accumulation in 
each step, the separation of the parameters of a different nature is not straightforward as for 
open chain manipulators. Due to the fact that the direct approach allows parameters 
identification in one single experiment, removing the accumulation of error between steps, 
this chapter will be focus on the direct approach applied to parallel manipulators. 
The first part of the chapter deals with conventional direct dynamic parameters 
identification processes. Thus, the dynamic model, suitable for identification purposes, is 
developed in its linear form with respect to the dynamic parameters. Due to the fact that the 
number of parameters is usually greater than the dimension of the equations of motion, an 
overdetermined system is developed. This overdetermined system is rank deficient, 
therefore it has to be reduced to another equivalent system that only contains independent 
columns. These columns correspond to a subset of parameters called the base parameters. 
Reduction process can be held symbolically (Khalil & Bennis, 1995) or numerically (Gautier, 
1991). For experiment design and in order to reduce the sensitivity of the system to the noise 
signal, procedures have been developed for the trajectories to be executed by the 
manipulator (Gautier & Khalil, 1992; Swevers et al., 1997). Finally, the dynamic system in its 
reduced matrix form is solved for the base parameters using the Least Square Method 
(LSM). 
The parameters dynamic identification procedure outlined in the previous paragraph has 
two main disadvantages: firstly, results could contain non-physically feasible parameters 
and secondly, it is also limited to linear friction models. Non-physical feasibility can be 
detected by obtaining a base parameters solution that does not have any physical 
interpretation when compared with corresponding combinations of the inertial parameters; 
masses lower than zero or non positive-definite local inertial matrices (Yoshida & Khalil, 
2000). This issue not only affects the stability of some of the advanced model-based control 
algorithms, but is also crucial in the dynamic simulation tasks.  
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The second part of the chapter will focus on two identification procedures. First, a 
procedure based on the parameters identification formulated as a nonlinear constrained 
optimization problem is reviewed. This approach allows not only the implementation of 
nonlinear friction models to model friction phenomenon at robot joints, but also the 
consideration of constraint equations in order to ensure the physical feasibility of the 
identified parameters. The second procedure is established upon the accuracy of the 
parameter solution, which is called here the identifiability of the parameters. Experiments 
will be held on a class of parallel manipulator. The main conclusions and further research 
concerning parameters identification for parallel manipulators are presented at the end. 

2. Dynamic model 
The starting point of the identification process depends on obtaining the dynamic model of 
the mechanical structure in its linear form with respect to the inertial and friction 
parameters. For this purpose, the dynamic model can be developed basically by two 
methods (Kozlowski, 1998); the integral and the differential methods. The integral method is 
derived from the energy equation and requires measurements of positions, velocities and 
applied forces on the actuated joints. Measurements of accelerations are not required. This 
method has been applied on serial manipulators (Gautier & Khalil, 1988; Sheu & Walker, 
1989; Khalil et al., 1990; Sheu & Walker, 1991) and extended for parallel manipulators 
(Bhattacharya et al., 1997). Olsen and others also used the integral method (Olsen & 
Petersen, 2001; Olsen et al., 2002) where they proposed the use of the maximum likelihood 
method instead of the conventional Least Squares Method (LSM) in the identification 
process.  
On the other hand, the differential method takes the advantage of the equations of motion as 
a base in the development of the identification process algorithms. As a result, acceleration 
appears explicitly and needs to be measured. It is known that the equations of motion can be 
constructed implementing various dynamic principles. Models suitable for the identification 
process have been developed by means of; the Newton-Euler formulation (Luh et al., 1980; 
Atkeson et al., 1986; Olsen & Bekey, 1986; Khosla, 1989), the Lagrange formulation (Ha et al., 
1989; Sheu & Walker, 1991), Jourdain’s principle of Virtual Power (Grotjahn et al., 2004), 
Gibbs-Appell equations of motion (Benimeli et al., 2003) and recently (Hardeman et al., 
2006), a finite element based approach along with Jourdain’s principle of Virtual Power was 
used to develop an automatic generation of the dynamic models for identification. 
In order to study the advantages/disadvantages of the integral and differential methods, a 
comparison was carried out. The experiments were held considering a two degrees of 
freedom serial manipulator (Prufer et al., 1994). From the results, they concluded that the 
differential method has advantages over the integral one. Thus, the differential model is 
used here for parameters identification of parallel manipulators.  

2.1 Rigid body model 
The equation of motion that describes the dynamic behavior of an open chain manipulator 
can be obtained by means of Gibbs-Appell equations of motion. For a serial robot (Mata et 
al., 2002), the rigid body dynamic model can be written as follows, 
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where τk  and kq�� are the generalized forces and accelerations of the joint k, respectively, ωi i
G�  

is the angular acceleration, and 
i

i
Gr
G�� is the acceleration of the center of gravity, im  is the 

mass and 
i

i
GI  is the inertial tensor of  the center of gravity, and the superscript/subscript (i) 

stands for the link number. All of them expressed with respect to the ith local reference 
frame. The Denavit-Hartenberg modified convention has been considered for modeling the 
system and i = k..n indicates the sum over all links above joint k, including itself. 
For dynamic parameters identification, a linear form with respect to dynamic parameters is 
necessary. To this end (Atkeson et al., 1986), the linear acceleration of the center of gravity of 
the ith body  is expressed as a function of the linear acceleration of the link coordinate frame 
ith. Moreover, the link inertial tensor is also expressed about the link coordinate frame by 
means of parallel axis theorem. 
In addition, the following notations are introduced. On the one hand, the cross product 
a b×
GG  is expressed using the skew symmetric matrix a� . Thus, a b×

GG = a b⋅�  where, 
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z x

y x

0 a a
a a 0 a
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On the other hand, a⋅B G = â B⋅
G

 where,  
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By doing the above mentioned, upon substituting (2)-(3) in (1) and using some vector 
identities, the dynamic model linear with respect to dynamic parameters can be written as 
(Mata et al., 2005), 
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where ( )i i i i
i i i iˆ ˆ ˆη = ω + ω ω� �  y  ( )i i i i

i i i iη = ω ω + ω�� � � � . 

In equation (4), 
i i

i
O GrG  locates the center of mass of the ith link with respect to its own 

reference system. 
i

i
Or
G��  is the acceleration of the origin of the ith local reference system. k

iR  is 

the rotation matrix between the ith and kth reference systems. 
k i

i
O Or�  is the position vector 

from the ith reference system to the kth reference system with respect to the ith reference 
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system. [ ]Tk
kz 0 0 1=
G . P and R denote the type of the corresponding joint, revolute or 

prismatic, respectively. Equation (4) can be written in the following matrix form, 

 ( ) ⋅Φ = τ
GK K K K� ��

rbq,q,qK   (5) 

K can be denoted as the observation matrix of a single configuration; this matrix depends on 
the generalized kinematic variables. The vector of dynamic parameters Φ

G
rb  regroups the 

elements of the inertia tensor ⎡ ⎤⎣ ⎦
T

xx xy xz yy yz zzI I I I I I , calculated with respect to the 

local reference frame, the mass m  and the first mass moments with respect to the center of 
gravity [ ]Tmx my mz , for all the bodies contained in the system. 
Equation (5) can be applied for the dynamic parameter identification of open chain 
manipulators. Under other circumstances, such as parallel manipulators, its application is 
not straightforward. For parallel manipulators, the dynamic model can be obtained by 
making a cut at one or more joints so that the manipulator can be dealt with as an open-
chain mechanical systems with a tree structure. By doing so, equation (5) can be applied for 
the several open chain mechanical systems obtained after the cut. However, the constraint 
equations representing the union at the cutted joints should be fulfilled. These equations 
have the following form, 

 = =i 1 2 nf (q ,q ,...,q ) 0 i 1,2,...,m   (6) 

where 1 2 n(q ,q ,...,q )  are the generalized coordinates and m is the number of independent 
constraint equations. The degree of freedom (nDOF) of the system is obviously (n-m). Taking 
the first and the second time derivatives of the previous equations, the following the 
acceleration constraint equations are obtained, 

 ⋅ − =
G GG G G G�� �(q) q b(q,q) 0A   (7) 

where A is the Jacobian matrix of the constraint equations with respect to the generalized 
coordinates, and 

G
b  is a vector that contains all the terms that remain after removing all the 

acceleration dependent terms from the acceleration constraint equations. Regrouping the 
terms of the matrix A, according to the coordinated partition, in independent/dependent 
generalized accelerations,  

 [ ]
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

G�� G
G��

i
i e

e

q
b

q
A A   (8) 

where Ai and Ae are obtained when the above mentioned coordinated partition is applied to  
the Jacobian matrix of the constraint equations.  
Similarly, regrouping equation (5) but this time according to the independent and 
dependent generalized coordinates, 

 i rb i e rb e⋅Φ = τ ⋅Φ = τK K
G GK K   (9) 
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The subindices i and e refer to independent and dependent generalized coordinates 
respectively.  
In a similar way to that introduced in (Udwadia & Kalaba, 1998), and starting from equation 
(4) and equation (5), it can be proved that the dynamic equation for parallel manipulators in 
its linear form with respect to the dynamic parameters can be written in the form,  

 ⎡ ⎤− ⋅ ⋅Φ = τ − ⋅ τ⎣ ⎦
G K KT T

i e rb i eK X K X   (10) 

where −= ⋅1
e iX A A . 

If the dependent generalized forces correspond to passive joints then, they can be dropped 
form the equation. Hence, equation (6) is reduced to, 

 ⎡ ⎤− ⋅ ⋅Φ = τ⎣ ⎦
G KT

i e rb iK X K   (11) 

The observation matrix for a given trajectory can be found by appending this equation over 
all the configurations (npts) of the trajectory. This gives, 
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  (12) 

The left-hand side of this equation is the observation matrix for a given trajectory (Wrb) and 
the right-hand side is the corresponding applied forces ( τG ), or in a compact form, 

 ( ) ⋅Φ = τ
GG G G G� ��

rb rbq,q,qW   (13) 

2.2 Friction models 
Several friction models have been proposed in the literature (Olsson et al., 1998). The 
classical friction model used for identification is a linear model which includes Coulomb 
and viscous friction. Equation (14) represents a general asymmetrical linear model 
(Armstrong, 1988) for both Coulomb and viscous friction, 

 c v
f

c v

F F q q 0
F

F F q q 0

+ +

− −

⎧ + >⎪= ⎨
− − <⎪⎩

� �
� �

  (14) 

where cF  and vF  stand for the Coulomb and viscous friction coefficients, respectively. (+ve) 
and (-ve) superscripts correspond to the velocity sign. Considering different coefficients for 
the different velocity sign, this model is asymmetrical. Applying the friction model to all 
joints and for all the configurations (npts),  

 ( ) ⋅Φ = τ
GG G�

f f fqW   (15) 



Dynamic Parameter Identification for Parallel Manipulators 

 

27 

The previous equation is applicable in the case of linear friction model. In the other case, if 
the friction at joints seems to have nonlinear tendency, nonlinear friction models can be 
used. In the identification process different nonlinear friction models have been used. For 
example  the following models (Grotjahn et al., 2001), 

 
1 2 32 C v v vF (v) F F v F atan(F v)= + +   (16) 

where, 
1 2C v vF ,F ,F  and 

3vF  are friction model parameters. On the other hand, another model 
proposed (Farhat, 2006) for friction modeling has the form,  

 c v
f

c v

F F v v 0
F

F F v v 0

δ+

δ−

⎧ + >⎪= ⎨
− − <⎪⎩

  (17) 

where, cF , vF  are Coulomb and viscous parameters and δ  a geometry dependent variable 
that takes into account the Stribeck effect. 

2.3 Actuator dynamics 
In some cases, a considerable part of the actuator torque is consumed by accelerating or 
decelerating its rotor inertia ( riJ ) and its driven system (for instance, a ball screw drive , sJ ). 
Then, the rotor and the driving system inertia have to be considered. The corresponding 
equation for the actuator of the  ith joint can be written as follows, 

 ( )ri ri s iJ J qτ = + ⋅ ��   (18) 

Equations (18) is linear. The actuator dynamic for all the joints and for all the configurations 
(npts) can be expressed in matrix form as, 

 ( ) ⋅Φ = τ
GG G��

r r rqW   (19) 

2.4 Complete robot model 
If only linear friction models are considered in the identification process, equations (13), 
(15), and (18) can be grouped. Thus the complete dynamic model of the manipulator can be 
express as follows, 

 [ ] TT T T
rb f r rb f r⎡ ⎤Φ Φ Φ = ⋅Φ = τ⎣ ⎦W W W W

G G G G G   (20) 

In equation (20), W is the observation matrix of the system and Φ
G

 is the vector grouping all 
the dynamic parameters. In the case that nonlinear friction models are considered, the 
complete dynamic model of the manipulator can be expressed in the form, 

 [ ] ( ) ( )i e i e

TT T T T
rb r rb r f f f fF F F F⎡ ⎤Φ Φ + − ⋅ = ⋅Φ + − ⋅ = τ⎣ ⎦

G G G GG G G GW W X W X   (21) 

where 
ifF
G

and 
efF
G

 stand for the friction in the independent and dependent joints, 

respectively. These vectors include the friction parameters ( fΦ
G

).Φ
G

, in this case, contains the 
body and the actuator dynamic parameters.  
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2.5 Base parameters 
An important characteristic of the system expressed by equation (20) is that some inertial 
parameters do not affect the dynamics of the manipulator and others have a relative effect 
with respect to the other parameters on the external generalized forces. Mathematically, this 
can be expressed by the presence of zero columns in the observation matrix (W) and the 
dependence that exist between others. Hence, this system never could be considered as a 
determined one. The minimal number of parameters that are needed to determine uniquely 
the dynamics of the system has to be calculated. This set of parameters is known as the base 
parameters and can be considered as a combination with the others that have an effect. The 
number of base parameters is equal to the rank of the observation matrix. 
The base parameter combination can be calculated principally in two ways; analytically 
(Khalil & Bennis, 1995) or numerically using the Singular Values Decomposition (SVD) or 
QR factorization (Gautier, 1991). The analytical analysis will not be considered here since for 
a parallel manipulator its application is not direct. Analytical calculation of the base 
parameters have already been presented for close chains mechanical systems (Khalil & 
Bennis, 1995), however, the method is applicable only to some particular topologies. The use 
of SVD is characterized by its precision, while the QR factorization by its low computational 
cost. The first case is of interest to us since the precision of the resulting inertial parameters 
identified is more important. 
As an example, consider the 3-DOF RPS (revolute, prismatic and spherical joints) parallel 
manipulator depicted in Fig. (1), this manipulator (a virtual model and an actual one) are 
used here for the experimental evaluation of the dynamic parameter identification process.  
As can be seen in the figure, this parallel manipulator consists of a fixed base and a moving 
platform interconnected by three RPS limbs. The axes of rotation of the revolute joints are 
assumed to share the same plane of the base. Spherical joints are modeled as three 
successive revolute joints with the corresponding axes of rotation passes through the center 
of the spherical joint. The linear motion of each prismatic joint of the actual parallel robot is 
achieved through a ball screw linear actuator driven by a DC motor. 
This parallel robot consists of 7 bodies: 3 limbs in which two of then contain two bodies and 
one with 3 bodies including the platform. Then, considering linear friction models and for a 
trajectory of npts configurations, the manipulator dynamic model in its linear form is 
appended in the following matrix form, 

 
DOF pts fric J fric J DOF pts(n n ) (70 n n ) (70 n n ) 1 (n n ) 1× + + + + × ×⋅Φ = τW i i

G K  (22) 

As described before and because of the dependence between the inertial parameters the 
SVD has been used to reduce this model to its base form (reduced form) expressed by the 
following equation, 

 ( )red baseq,q,q ⋅Φ = τW
GG G G G� ��   (23) 

where Wred is the reduced matrix and baseΦ
G

 is the base parameters vector. This vector is 
composed of the 25 parameters listed in Table (1). It has been found that friction parameters, 
as well as the screw and rotor inertial parameters, are linearly independent. 
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Fig. 1. The 3-DOF RPS parallel robot; ADAMS model on the left and Actual 3-RPS parallel 
robot on the right (built at the Polytechnic University of Valencia).  
 

No Base Parameters No Base Parameters 
1 mx(1) 14 mx(4) 
2 my(1)*, ** 15 my(4)* 
3 Izz(1)+Iyy(2)*, ** 16 Iyy(5)+ Izz(4)* 
4 mx(2) 17 m(5)-2.531my(3)+m(3)+m(2)*,**,† 
5 mz(2)* , ** 18 mx(5) 
6 Ixx(3)-0.3952my(3)* , ** 19 mz(5)* 
7 Ixy(3)+0.2282my(3) 20 mx(6) 
8 Ixz(3)   

9 Iyy(3)+0.3952my(3)-
0.2082(m(3)+m(2))    * , ** 21 my(6)* 

10 Iyz(3) 22 Iyy(7)+ Izz(6)* 
11 Izz(3)-0.2082 (m(3)+m(2))* , ** 23 m(7)+2.531my(3)* , **,† 

12 mx(3)+0.5774my(3) -
0.4563(m(3)+m(2))     * , **,† 24 mx(7) 

13 mz(3) 25 mz(7)* 

Table 1. Rigid body base parameters of a 3-RPS robot. 

3. Experiment design 
An accurate and efficient dynamic parameter identification process requires special design 
experiments. The trajectories to be executed by the robot not only have to be able to reduce 
the sensitivity of the identification solution to the noise signal, but also the data processing 
(position and forces) needs to be kept as simple and accurate as possible.  



 Parallel Manipulators, Towards New Applications 

 

30 

The condition number of a matrix can be considered as an upper limit for input-output error 
transmissibility (Horn & Johnson, 1985). Therefore one of the criteria for designing a “well 
excited” trajectory is to minimize the condition number of the matrix Wred. This can be 
treated as an optimization process where the objective function can be written as,  

 ( ) ( )=
G G G� ��

redf q,q,q Cond W   (24) 

As can be observed from equation (24), the variables of the optimization process are the 
generalized coordinates and there time derivatives. Several approaches have been proposed 
(Armstrong, 1989; Gautier & Khalil, 1992; Presse & Gautier, 1993) in which the trajectory is 
parameterized. However, the finite Fourier series trajectory parameterization proposed by 
(Swevers et al., 1996) is the most widely implemented.  
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where  t is the time, qi0, aij and bij are the coefficients of the Fourier series that will be the 
new variables of the optimization process, nH is the harmonic number and f is the 
fundamental frequency.  
Generally, there exist many limitations on the movement of the actual manipulator. These 
can be converted to constraints in the optimization process. Depending on their complexity 
with respect to the variables of the optimization process they could be linear or nonlinear. 
For example, limitations on the displacements and the velocity of the prismatic joints 
(actuators) – if exist – are linear, meanwhile limitations to avoid the singularity regions or 
physical constraints such as the aperture angle of the spherical joints are nonlinear.  
It will be important to mention that the condition number of the observation matrix is not 
the only criteria for finding exciting trajectories. In a statistical frameworks the covariance 
matrix of the maximum likelihood has been used (Swevers et al., 1997). The criteria for 
optimization is called d-optimality criterion and has the following form, 

 ( ) ( )( )t 1f q ,q ,q log det −= − ΣW WG G G� ��   (26) 

where Σ  is the diagonal covariance matrix of the measured actuator forces. Recently, this 
criteria was used for the case in which the parameterization of the trajectories was based on 
combining Fourier series and polynomial functions (Park, 2006). 
As mentioned previously above, the exciting trajectories must allow simple and accurate 
data processing. This can be achieved if measurement position is fitted to the finite Fourier 
series.  
For the considered parallel manipulator presented in the previous section, the exciting 
trajectories were obtained according to the criteria of minimization of the condition number 
of the reduced observation matrix. The trajectory was parameterized by means of a finite 
Fourier series with 11 harmonics functions. Limitations on the movement of the actual 
manipulator that were introduced as constraints in the optimization process can be outlined 
as follows,  
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1. Limitations on the stroke of the linear actuators, upper and lower bounds.  
2. Limitations on the velocities of the linear actuators, upper and lower bounds. 
3. Limitation on the aperture angle of the spherical joints. Observe that this is a 

sufficient condition to avoid singularity regions of this manipulator.  
The optimization process was carried out in FORTRAN environments using a nonlinear 
Sequential Quadratic Programming (SQP) optimization routine provided by the NAG 
commercial library.  
It is important to mention that in the optimization process, one can take use of methods for 
scaling the reduced observation matrix. The scaled matrix can be obtained as follow,  

 ( )red redeq
= ⋅ ⋅W R W C   (27) 

where R is the r×r diagonal matrix and C is the b×b diagonal matrix, both including row and 
column scaling factors on their diagonal, respectively. r and b are the dimensions of redW . 
To keep on the benefits of the condition number reduction of redW , scaling must be 
introduced into the identification process. Another approach that can be used for scaling 

redW  is the normalization of the matrix by means of the division of its columns by their 
norms.  The use of scaling factors or the normalization rescale has to be taken into account in 
the identified model parameters afterwards.  
For the purpose of experimental parameter identification, several trajectories were found. 
For example, one of the trajectories that have been obtained had the condition number of 
595. It is depicted in Fig. (2).  

4. Physical feasibility 
Once an optimized trajectory has been found and it is applied to the manipulator, data is 
measured so that the dynamic system represented by equation (23) is ready to be solved. At 
this point an important issue in the dynamic parameters identification arises: the physical 
feasibility of the identified parameters. Because of the incompleteness of the dynamic model 
and the existence of noise in the measurements, the solution of equation (23) by LSM, or the 
identified base parameters, is susceptible to have no physical interpretation when compared 
with corresponding combinations of the inertial parameters; masses lower than zero or non 
positive-definite local inertial  matrices (Yoshida &  Khalil,  2000). This issue not only  affects 
the stability of some of the advanced model-based control algorithms, but it is also a crucial 
one in the case of dynamic simulations. 
To insure the physical feasibility of the identified parameters a nonlinear constrained 
optimization process, instead of the LSM, could be implemented to solve equation (1). The 
corresponding physical feasibility constraint equations have the following form, 

 ( )
( ) ( ) ( ) ( )i

i
g
xx

2g g xy
xx yy xy

2 22g g g g g g g g g g g gi
G xx yy zz xy xz yz xx yz yy xz zz xy

m 0
I 0

I I I 0

det I I I 2 I I I I I I I I I 0

>

>

− >

= + − − − >I

  (28) 

where g g g g g
xx xy xz yy yzI ,  I ,I ,I ,I  and g

zzI  are the components of body inertia matrix 
i

i
GI  calculated 

with respect to its center of gravity. 
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Fig. 2.  An optimized trajectory with a Condition Number of 595. 
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Note that in equation (28), local inertia matrixes are calculated with respect to the center of 
gravity, meanwhile the inertia matrix terms of the identified base parameters are calculated 
with respect to the origin of the local reference system. Hence, to verify the physical 
feasibility of a set of numerical values of the base parameters, they must be compared with 
the corresponding combinations of the inertial parameters. That is to say, if it is possible to 
obtain a set of inertial parameters that verify the equality between the linear combinations 
and the numerical values of the base parameters then this set of base parameters – 
numerical values – is judged to be physically feasible, and vice versa. A scheme was 
proposed (Yoshida & Khalil, 2000) to judge whether the values of the base parameters 
correspond to a set of physically feasible inertial parameters, or not. This scheme evaluates 
the physical feasibility after the parameter identification process has been carried out. Other 
authors subject formulate the identification process as a nonlinear constrained optimization 
problem (Mata et al., 2005; Farhat et al., 2008). This approach allows on the one hand, 
ensuring the physical feasibility of the identified parameters. On the other hand, it permits 
the implementation of nonlinear friction models, like the one expressed by equations (16) 
and (17), to model friction phenomenon at robot joints. To this end, the objective function of 
the identification problem has the form,  

 ( ) ( ) ( ) ( )( )i e

I I T
red base f feq

Nonlinear friction vectorLinear part

f q,q,q, F Fτ = τ − ⋅ Φ + − ⋅W X
K KG G G K K� ��

���	��
���	��

,  (29) 

constrained by equation (28) applied to all links constituting the robot.  

5. Practical issues  
5.1 Measurements 
Recall that the inputs of the identification process are the external forces, positions and there 
time derivatives, all measured for an optimized trajectory. Generally, the external forces or 
the torque exerted by motors is not directly available. An acceptable approach is to assume a 
linear relation between the current and the torque, 

 m m mK iτ =   (30) 

where mτ  is the motor torque, mi  is the motor current and mK  is the torque constant which 
can be found, among other methods, by means of a previously performed experiments on 
the dismounted motors or by in situ experiments (Corke, 1996).  
On the other hand, for kinematic variables, most industrial robots are provided with a 
precise position sensor. However, the direct measurement of joints velocities and joints 
accelerations is not normally available. Thus, they are obtained by taking the time derivative 
of the measured positions. These derivatives could be obtained numerically using central 
difference algorithms (Khalil & Dombre, 2002). For the velocity, 

 ( ) ( ) ( )( )i i
i

q t 1 q t 1
q t

2 t
+ − −

=
Δ

�   (31) 

Other approaches (Swevers et al., 1996) suggest, using the exciting trajectory found by the 
optimization process. In this manner the new trajectory coefficients are found by refitting 
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the measured positions to the Fourier series. Therefore, the first and second time derivatives 
could be obtained analytically. Other authors (Gautier et al., 1995) propose filtering the 
measured positions by a low pass filter before taking the derivative numerically.  
The authors of this chapter made a comparison between three different method for finding 
the time derivatives (Diaz-Rodriguez et al., 2007).  The comparison was carried out over a 3-
RPS parallel manipulators which was equipped with accelerometers located at the 
generalized independent coordinated. The following methods were used,  

1. Filtering the measured positions by a low pass filter before taking the derivative 
numerically (Gautier et al., 1995) 

2. Refitting the measured positions to the Fourier series used in the trajectory 
optimization process (Swevers et al., 1996) 

3. Approach based on local fitting (Page et al., 2006). A local regression of the 
measured trajectory was executed using a third order polynomial. When 
performing the local regression the whole set of samples were considered, but with 
different statistical weights. After applying the local regression, the velocities and 
accelerations were derived from each polynomial. 

The main conclusions of the work indicated that the three methods give quite similar results 
for the analyzed robot. Therefore, provided that well excited trajectories are used in the 
identification, any of these methods can be used in a deterministic framework. 

5.2 Dynamic model reduction 
If the geometry of robot parts is taken into account, some rigid body base parameters have 
zero values or values close to it. Consider for instance the 3-RPS robot (Fig. (1)) where the 
links connected to the base have a cylindrical geometry. It can be supposed – with a degree 
of certainty that the gravity center of these links lies on an axis parallel to the actuator 
movement. In this case, the corresponding axes of the local reference system attached to the 
body is in (y) direction, so the parameter related to the (x) position of the gravity center can 
be expected to have values close to zero. The same assumption is applied to links connected 
to the moving platform. Therefore, parameters 1, 4, 14, 18, 20, 24 from Table (1) can be 
removed. Moreover, it is possible to consider as well the form of the platform which is 
circular and flat, and by doing so parameters 7, 8, 10, 13 can also be removed. This reduced 
model is highlighted by (*) in Table (1). Another simplification can be applied if the parallel 
manipulators symmetry is considered. In Table (1) the rigid body base parameters of this 
case is highlighted by (**). It is important to mention that the columns of the observation 
matrix, associated with base parameters that consider the symmetry, have to be added in 
order to develop a model which properly describes the dynamic behavior of the robot. Table 
(2) summarizes the different models that have been proposed here.  

5.3 Identifiability of the base parameters 
When a direct parameter identification process is experimentally performed, two sources of 
error become apparent. On the one hand, not all the aspects of the robot can be modeled in 
detail (modeling discrepancies). On the other hand, noise in measurements is present. These 
errors lead to the fact that not all the base parameters can be properly identified. This 
apparently occurs when the independent contribution of some parameters to the 
generalized forces is smaller than the measurement noise or the modeling discrepancies.  
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The study of which parameters can be properly identified can be established on analyzing 
the relative standard deviation ( piσ ) of each parameter (Khalil & Dombre, 2002b) along with 
considering the physical feasibility (Yoshida & Khalil, 2000). Physical feasible base 
parameters with piσ  < 15% are considered properly identified. 
 

Model Nº of Rigid 
Body Parameters Parameter removed from Table (1) 

1 25 - 
2 15 1, 4, 7, 8, 10, 13, 14, 18, 20 and 24 
3 9 1, 4, 7, 8, 10, 13, 14, 15, 16, 19, 18, 20, 21, 22, 24 and 25 

Table 2. Different rigid body models for the dynamic parameter identification process of the 
3-DOF RPS parallel manipulator. 

6. Application to a 3-RPS robot  
In this section, the results of the identification process, implemented by the authors over a 3-
RPS parallel manipulator, are presented. In the first part, the approach based on considering 
the physical feasibility in the identification process is presented. In the second part of the 
section, the identifiability of the dynamic parameter for the 3-RPS robot is evaluated. In both 
sections, the identification process is validated using a simulated manipulator built by 
making use of the ADAMS dynamic simulation program. After that, it is applied over a real 
one constructed at the Polytechnic University of Valencia, see Fig. (1).  

6.1 Identification considering the physical feasibility 
Because of the noise in the input data and/or the discrepancies between the actual parallel 
robot and the dynamic model used in the identification process, some of the inertial 
parameters obtained using LSM methods result physically unfeasible. Thus, the necessity 
for a constrained optimization process to ensure physical feasibility appears clearly. In this 
subsection, the results are shown as a comparison between the original actuator forces and 
those calculated using the identified dynamic parameters in the case of; a) linear friction 
models and. b) nonlinear friction models. 
The dynamic model of this manipulator, trajectory optimization and identification process 
were built in FORTRAN programming language with the aid of the NAG library and the 
NLPQL Sequential Quadratic Programming subroutine (Schittkowski, 2000).  
Simulated Robot 
In the simulated robot, nonlinear friction model is considered at all the joints of the robot. It 
can be represented by the following relation,  

 
S

Sv v
C S C vF(v) F (F F )e F v

δ

= + − +   (32) 

Where  FC, FS and Fv are the Coulomb, static, and viscous friction coefficients, respectively, 
vS is the Stribeck velocity and δs is the stiction transition velocity. This model consists of five 
parameters and captures the Coulomb, static, viscous and Stribeck friction forces (Olsson et 
al., 1998). After calculating the external original forces, errors are introduced assuming a 
normal distribution producing the perturbed forces. Now, based on these perturbed forces, 
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identification is carried out considering asymmetric linear friction models for all joints, 
using LSM and optimization, and symmetric nonlinear friction models using optimization. 
The corresponding identification errors are shown in Table (3). where RAε  is the Relative 
Absolute Error and is defined as, 

 
i

*
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i
RA * *

i
i

τ − τ
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τ − τ

∑

∑
  (33) 

where, *τ  and idntτ  are the actual applied force and those calculated using the dynamic 

model applying identified dynamic parameters, and *τ  is the average of *τ . 
 

RAε (%) Perturbed Original 
Linear (LSM) 11.96 8.26 
Linear (Opt.) 12.44 8.85 

Nonlinear (Opt.) 11.02 7.28 

Table 3.  Identification errors based on simulated manipulator. 

As can be seen in Table (3), considering the case where linear friction models were used in 
the identification process, when the physical feasibility had been ensured, i.e. identification 
by optimization, the error increased. On the contrary, when this was accompanied by the 
nonlinear friction models, the results were improved considering both the perturbed and the 
original forces. Note that in this step, identification was carried out simulating both types of 
the mentioned identification process error sources.  
Actual robot 
Now, after verifying the identification process over the simulated manipulator, the results 
are shown in detail considering the identification of the dynamic parameters of the actual 
manipulator. Starting with the optimization process for the exciting trajectory and changing 
the initial estimations, different optimized trajectories were obtained. An example of such an 
optimized trajectory is that one presented previously in Fig. (2). Hereafter, the identified 
dynamic parameters were obtained basing on anther optimized trajectory with a 
corresponding condition number of 638.  
A PID controller is used in order to determine the control actions. The control actions were 
applied with a frequency of 100Hz, at which measurement were also taken. The total 
duration of the optimized trajectory is 7.5s. Trajectories were repeated several times, the 
applied control actions were averaged and then a second order lowpass digital Butterworth 
filter was applied. For the identification process, 75 configuration points are extracted every 
0.1s.  
When the LSM was used in the identification process, a non physically feasible base 
parameters were found. Hence, the identification process was held using the nonlinear 
constrained optimization process where the physical feasibility of the obtained inertial 
parameters was ensured. Fig. (3) shows a graphical comparison between the actual forces 
and those calculated using the dynamic parameters identified by LSM and optimization 
considering asymmetric linear friction models at the prismatic joints.  
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In order to justify the use of nonlinear friction models in the identification process rather 
than those which are linear, as the friction phenomenon in the considered joints has this 
tendency, a thorough error comparison was made. This is established considering three 
different sets of dynamic parameters identified by: LSM, optimization in the linear case if 
linear friction models are considered and optimization in the nonlinear case. In order to 
make an overall judgment, error comparison takes place over the same trajectory used in the 
identification process (that one of a condition number of 638) and others which are excited, 
including the low velocity one. The resulted calculated error in each case is shown in Table 
(4).   
As can be observed from Table (4), considering identification by the optimization case and 
excluding the trajectory used in the identification process, the errors in the predicted applied 
forces considering the identified nonlinear friction models are lower than those 
corresponding to the linear friction ones for all trajectories. This shows that the dynamic 
model that includes nonlinear friction models has a better overall response. On the other 
hand, the dynamic parameters obtained by the LSM give the lowest error for all of the test 
trajectories. However, the calculated errors using the identified parameters found by means 
of the test trajectories became bigger, and almost doubled, contrary to those calculated by 
optimization, which kept the same order. Furthermore, the identified dynamic parameters 
using the optimization process are physically feasible.  

6.2 Identifiability of the base parameters 
The identification process, as has been pointed out in the previous section, has the ability to 
obtain a physical feasibility solution; however, the constrained optimization problem is 
cumbersome. This occurs because constraint equations are functions of the terms of the 
inertia tensor calculated with respect to the center of gravity of the corresponding body, and 
the linear relation between the base parameter vector and the physical parameters is not just 
one.  
In addition, the solution of the nonlinear problem does not guarantee that the set of physical 
parameters found has been identified accurately.  Another approach that can be used for 
parameter identification is to evaluate the physical feasibility after the identification process 
has been carried out (Yoshida et al., 1996) along with the statistical analysis of variances in 
the resulting parameters.  Hence, two aspects are verified:  Base Parameters with piσ  < 15% 
and physical feasibility. If the parameter accomplishes these criteria, the parameter is 
considered properly identified. 
For example, here, the identifiably of the dynamic parameters of a 3-RPS parallel robot is 
addressed considering a simulated manipulator whose inertial parameters have been 
obtained from the CAD models and the friction parameters has been obtained from an 
indirect parameter identification process performed by the authors (Farhat et al., 2006). 
Noise was added to the generalized forces as well as the independent generalized 
coordinates and their time derivates.  
The three models previously introduced in Table (2) were used in the identification process. 
Friction was identified using symmetrical linear models that include Coulomb and viscous 
frictions. When the parameters identified by using Model 1 were analyzed, only 4 of the 34 
parameters, including friction and rotor and screw inertias, had piσ  lower than 15%, and 
some of the identified parameters were physically unfeasible. This can be demonstrated in 
Table (5) (marked by *), where it can be seen the values of parameters of the simulated and 
the identified models, respectively. 
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Fig. 3. Results from the LSM (τLSM) and the optimization process (τopt). 
 

RAε  (%) Trajectory condition number 
Friction model 563 638 718 601 492 LowVel

LSM 12.8 9.48 14.6 17.9 17.9 15.5 
Linear 

Opt 26.1 20.5 24.4 23.9 23.9 19.2 
Nonlin Op 24.7 21.2 23.5 23.4 23.4 18.0 

Table 4. Error comparison considering linear and nonlinear friction models. 

Results of the number of parameters properly identified, when model 1-3 was used in the 
identification process, are listed in Table (6). The table includes also the average relative 
error of the identified parameter relative to the exact parameter ( AVε ), 
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where iΦ   the exact values of the parameters and iΦ
�

 is  the vector containing the identified 
parameters. An interesting fact is that despite that Model 1 achieving the lowest RAε , the 
corresponding AVε  value was the highest. In addition, only 4 parameters were properly 
identified. The difference between models 2 and 3 in RAε was about 1.5%. As 12 parameters 
are identifiable, identification was performed using only these parameters (Model 4). This 
model includes 3 inertial parameters of the links related to the platform and marked by (†) 
in Table (1). 

Parameter Exact Values Identified 
Values piσ  % 

Izz(4)+Iyy(5) 0.1555 -86.2016* 80.1596 
Izz(6)+Iyy(7) 0.1555 -66.6355* 62.0087 

Fv(1) 3272.0 3296.73 2.5677 
Fc+(1) 227.96 1659.0181 53.3048 
Fc-(1) 228.04 -1210.55* 73.1859 

Jr(1)+JS(1) 483.10 505.03 13.8778 

Table 5. Some of the base parameters identified using Model 1 

Model RAε  % AVε % Number of Parameters
1 4.57 5.37 37/4 
2 4.58 2.94 24/12 
3 4.63 3.06 18/12 
4 4.73 3.17 12/12 

Table 6. Results of RAε and AVε  from different models.  

This result could indicate that, because of the topology of the parallel manipulator and in 
the presence of measurement noise, 12 parameters from which 3 are of the links inertial 
parameters can be used for modeling and simulating the 3-RPS parallel manipulator 
behavior. 
Following the same procedure, a dynamic parameters identification process was applied 
over an actual parallel 3-RPS manipulator. The resulted RAε  values and the number of 
parameters properly identified are shown in Table (7). Comparing Table (6) and Table (7), 
the level of RAε in the actual manipulator was doubled, but the numbers of parameter 
properly identified was found similar (12 for Model 4). The identified links base parameters 
of Model 1 and 4 are presented in Table (8) along with those of the simulated manipulator. 
As can be observed, the identified parameters of the actual manipulator using model 4 and 
the original CAD values of the simulated manipulator are comparable. Contrary to those 
identified using Model 1 where a significant difference appears. 
The fact that 12 parameters can be properly identified is reasonable. On the one hand the 
topology itself of the parallel manipulator, does not allow finding well-excited trajectories. 
Additionally, some base parameters have a little contribution to the dynamic behavior of the 
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model; for example, during the movement the accelerations of the limbs are smaller than the 
platform. On the other hand, the friction of the linear actuator of the real manipulator was 
found to be high, this difficult even more the identifiability of the base parameters of the 
links.  
Finally, Model 4 was validated. Parameters obtained from one trajectory were used to 
compute the forces for another one that had not been used for identification. Fig. (4) depicts 
this comparison. As can be seen, the estimated and measurements forces are very close. 
 

Model RAε  % Number of Parameter
1 8.40 37/2 
2 8.43 24/9 
3 8.53 18/12 
4 8.62 12/12 

Table 7. RAε  from actual 3-RPS Manipulator. 

Base Parameter CAD 
Real 

Manipulator 
Model 4 

Real 
Manipulator 

Model 1 
mx(3)+0.5774my(3) -
0.4563(m(3)+m(2)) -2.47 -2.59 1.16 

m(5)-
2.531my(3)+m(3)+m(2) 10.83 13.72 -3.29 

m(7)+2.531my(3) 5.42 6.95 -0.557 

Table 8. Rigid Body Base Parameters Model 1 vs Model 4. 

7. Conclusions and further research   
In this chapter, the problem of the identification of inertia and friction parameters for 
parallel manipulators was addressed. In the first part of the chapter an overview of the 
identification process applied to parallel manipulators was presented. First, the dynamic 
model was obtained in a systematic way starting from the Gibbs-Appell equations of 
motion. This dynamic model was reduced to a subset of parameters called base parameters 
by means of SVD. After that and to ensure the minimal input/output error transmissibility, 
approaches to obtaining optimized trajectories that have to be used in the identification 
process were presented. In the second part of the chapter, a direct identification approach 
was implemented on a 3-DOF RPS parallel manipulator considering the physical feasibility 
of the identified inertial parameters. To this end, a procedure based on a nonlinear 
constrained optimization problem has been reviewed. In addition, nonlinear friction models 
were included in the dynamic formulation subjacent to the identification process. In the last 
part of the chapter, a study of the identifiability of the base parameters was presented. It 
based on both analyzing the relative standard deviation of each parameter and considering 
its physical feasibility. For this approach a simulated manipulator was necessary for 
studying and evaluating models used in the identification process. For future research, a 
systematical approach is expected to be found, based on statistical frameworks and physical 
feasibility, for studying the identifiability of the dynamic parameter without the necessity of 
a simulated manipulator. Concepts presented here for parameter identification of parallel 



Dynamic Parameter Identification for Parallel Manipulators 

 

41 

manipulators can be extended to other areas. For instance, vehicle components (Butz et al., 
2000; Serban & Freeman, 2001; Chen & Beale, 2003; Sujan & Dubowsky, 2003) and ultimately 
the novel humanoid systems (Gordon & Hopkins, 1997; Silva et al., 1997; Kraus et al., 2005). 
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Fig. 4. Measurement Forces (-red) and Forces from Identified Parameter (–o blue) 
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1. Introduction    
For any robotic system, fault tolerance is a desirable property. This work uses a comparative 
approach to investigate fault tolerance and the associated problem of reduced 
manipulability of robots. An important result in combinatorial matrix theory is first 
obtained. Its consequent modifications are then applied to the theory of fault tolerance of 
robotic manipulators. 
It is shown that for a certain class of parallel manipulators, the mean squared relative 
manipulability over all possible cases of a given number of actuator failures is always 
constant irrespective of the geometry of the manipulator. A theorem formulates the value of 
the mean squared relative manipulability. It is shown that this value depends only upon the 
number of simultaneous joint failures, the nominal number of joint degrees of freedom and 
the nominal task degrees of freedom. It is difficult to predict specific failures at the design 
stage and as such failure of any actuator is considered equally likely. In this context, optimal 
fault tolerant manipulability is quantified. The theory is applied to a special class of parallel 
manipulators called Orthogonal Gough-Stewart Platforms (Orthogonal GSPs or OGSPs). A 
class of two-group symmetric OGSPs which inherently provide for optimal fault tolerant 
manipulability under a single failure is developed. 

2. Background 
Robotic manipulators have become popular in numerous applications. They have been 
employed in automation of industrial processes, underwater exploration, space exploration 
and innovative defence technologies. The nature of some of these applications makes human 
presence near manipulators difficult and in many cases, impossible. This is especially true 
for robots employed in remote and hazardous environments. The repair and maintenance 
tasks for such robots are extremely difficult. In such cases, operational reliability is of prime 
importance. Therefore, it is imperative to incorporate failure tolerance in system design. 
Under the occurrence of failures, fault tolerance enables the robotic system to maintain 
critical functioning with a reduced level of performance. 
Current research efforts are focussed on developing techniques for designing fault tolerant 
manipulators and robotic vision systems.  
Redundant manipulators are rapidly becoming a focus of research due to a multitude of 
potential advantages they provide. In serial robots, kinematic redundancy has been 
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employed for obstacle avoidance (Baillieul, 1990), dexterity optimization (Lewis & 
Maciejewski, 1992) and torque minimization (Hollerbach & Suh, 1987). In parallel 
manipulators, singularity avoidance (Kim et al., 2004) and stiffness improvement (Kock & 
Schumacher, 1998) are broad areas where kinematic redundancy has proven useful. Another 
significant attribute of redundancy that has come under recent investigation is fault 
tolerance. 
Kinematic failures commonly occur in manipulators. The effect of such failures on 
manipulator performance depends upon the nature of failure and the nominal kinematic 
design of the manipulator. For instance, loss of an actuator can render a serial manipulator 
completely unmanipulable. On the other hand, parallel manipulators can be designed to 
retain kinematic stability under loss of actuators. Locking of actuators is another commonly 
observed failure phenomenon. In any failure scenario a robotic system loses partial or 
complete manipulability. Fault tolerance and the consequent problem of reduced 
manipulability have been studied by a number of researchers. 
Maciejewski (Maciejewski, 1990) associates the concept of fault tolerance to manipulator 
configuration. Dexterity index is used as a measure of fault tolerance. Optimal fault tolerant 
configurations are defined using this measure. 
Roberts and Maciejewski (Roberts & Maciejewski, 1996) propose a local measure to quantify 
fault tolerance of a manipulator pose in terms of a manipulability index. Their approach 
uses the singular value decomposition of the manipulator Jacobian matrix. They describe a 
direct relation between relative manipulability and the null-space of the Jacobian matrix. 
They propose relative manipulability index as a measure of fault tolerance. 
Paredis, Au and Khosla (Paredis, Au & Khosla, 1994) consider fault tolerance with respect to 
manipulator workspace and reach. They define fault tolerant workspace of a manipulator 
and suggest task based design of manipulators. Their approach uses iterative techniques to 
design manipulators. 
Ting, Tosunoglu and Tesar (Ting, Tosunoglu & Tesar, 1993) explore control algorithms for 
fault tolerant operation of manipulators. 
McInroy, O’Brien and Neat (McInroy, O’Brien & Neat, 1999) propose a fault tolerant 
precision pointing strategy using a class of parallel manipulators called Gough-Stewart 
Platforms (GSPs) (Stewart, 1966). A GSP is used as a pointing platform to reject vibrations 
from a noisy spacecraft bus over all frequencies. At low frequencies two-axis or three-axis 
pointing method is used, while at high frequencies six-axis vibration isolation is employed. 
The benefits of this approach include broadband pointing stability without a high-
bandwidth pointing sensor or destabilizing excitation of the high frequency structural 
modes. To incorporate fault tolerance, they propose a reconfiguration algorithm to compute 
a decoupling matrix which allows motion in ` off degrees of freedom' to compensate for 
failures. 
This work uses a comparative approach to investigate fault tolerance and the associated 
problem of reduced manipulability. Following is a description of the main contributions. 
An important result in combinatorial matrix theory is first obtained. Its consequent 
modifications are then applied to the theory of fault tolerance of robotic manipulators. 
It is shown that for a certain class of parallel manipulators, the mean squared relative 
manipulability over all possible cases of a given number of actuator failures is always 
constant irrespective of the geometry of the manipulators. This work uses the 
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manipulability index suggested by Yoshikawa (Yoshikawa, 1985) and the resulting relative 
manipulability indices proposed by Roberts and Maciejewski (Roberts & Maciejewski, 1996). 
A theorem formulates the value of the mean squared relative manipulability. It is shown 
that this constant depends only upon the number of simultaneous failures, the nominal 
number of joint degrees of freedom and the nominal task degrees of freedom. 
It is difficult to predict specific failures at the design stage and as such failure of any 
actuator is considered equally likely. From this perspective optimal fault tolerant 
manipulability for a given number of faults has been defined by Roberts and Maciejewski in 
(Roberts & Maciejewski, 1996). This work quantifies optimal fault tolerant manipulability 
based only upon the number of simultaneous failures, the nominal number of joint degrees 
of freedom and the nominal task degrees of freedom. 
For parallel manipulators employed in micromanipulation, the workspace is very small. For 
such manipulators, the definition of optimal fault tolerant manipulability for a given 
number of faults carries a different interpretation. Such manipulators can be assumed to 
operate only at a particular pose and therefore the the same definition can be applied to the 
manipulator in general rather than to a specific pose. As an illustration, the concept of 
optimal fault tolerant manipulability is applied to a special class of parallel manipulators 
called Orthogonal Gough-Stewart Platforms (Orthogonal GSPs or OGSPs). This work 
develops a class of two-group symmetric OGSPs (McInroy & Jafari, 2006) which inherently 
provide for optimal fault tolerant manipulability under a single failure. 

3. Quantifying optimal fault tolerant manipulability 
3.1 Manipulability index 

In the robotics standard, the Jacobian matrix mapping joint velocities,!!
"

, to generalized end 
effector velocities, V , is denoted by J . 

  = .V J!
"!  (1) 

A number of researchers have proposed different measures that quantify the manipulability 
of a manipulator. One such manipulability index, based on a matrix determinant, was 
proposed by Yoshikawa (Yoshikawa, 1985): 

  ( ) = ( ).Tw J det JJ  (2) 

Failures in manipulators can occur in various ways. In this work, only mechanical failures 
that cause a manipulator to lose an actuator are considered. The impact of such failures 
varies with different classes of parallel manipulators. In a wide class of parallel mechanisms, 
under a joint failure, the resulting manipulator Jacobian matrix, referred to as reduced 
Jacobian matrix, is given by the original Jacobian matrix except that the column 
corresponding to the failed joint is removed. Gough Stewart Platforms are a classic example 
of manipulators belonging to this class. On the contrary, in multi-fingered grasps, the 
impact of failures on the kinematic representation is a function of composite manipulability 
Jacobian matrix, described in (Wen & Wilfinger, 1999) and cannot be directly derived by 
elimination of rows or columns.  
The mechanisms treated in this work belong to the former class, which will be characterized 
by "#J . Consider a nominal Jacobian matrix, J , with n  actuators. A reduced Jacobian 
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matrix with i  simultaneous actuator failures will be denoted by J
i

. Note that this J
i

 is not 
unique since there may be multiple ways in which i  struts may fail. In order to identify all 
reduced Jacobian matrices uniquely, a subscript j  will be used. Therefore, 

j
J

1
, 

}{1,2,...,
i

n Cj# , will describe the alternative i  strut failure schemes. This representation will 
be more clear from the following example. 
Suppose J  denotes a manipulator with 3  actuators. Then J

1
 denotes a reduced Jacobian 

matrix with 1  actuator failure. There are 
1

3C  ways in which 1 actuator can fail at a time 
from 3  actuators. Here, 

g

f C  denotes the usual combinatorial notation. Therefore, 
j
J

1
 with 

{1,2,3}#j  completely represents all reduced Jacobian matrices. 
To analyze the post fault performance of a manipulator the relative manipulability index,

ji
r , 

will be used: 

  
( )

= .
( )

T
i j i j

i j T

det J J
r

det JJ
 (3) 

Clearly this index is normalized and the scaled translational and rotational components of 
the manipulator Jacobian matrix do not affect this value. 

3.2 Optimal fault tolerant manipulability 
For serial manipulators, (Roberts & Maciejewski, 1996) define optimally fault tolerant 
configurations have been defined as those J  in which the relative manipulability index 

ji
r  

remains constant over all possible j , for a given i . A rigorous method is provided in 
(Roberts & Maciejewski, 1996) to calculate 

ji
r  over all j  for a given i . However, that does 

not allow direct determination of optimal  
ji
r  over all j  for a given i . The following 

theorem shows that for a given n  and i  the sum of squares of 
ji
r  over all j  is invariant. 

Consequently, a formulation is developed that determines optimal 
ji
r  over all j (Ukidve, 

McInroy & Jafari, 2006). 
!"#$%#&' ()  Let J  be an nm$  ( mn > ) Jacobian matrix representing the operating 
configuration of any manipulator having n  actuators such that "#J . Then the mean 
squared relative manipulability over all possible failures j  given that i  ( i  %  )( mn & ) 
actuators fail at a time is constant and is given by 

  
2 ( )

=1 =1

( )1= = .
( )

n n T n ii ii j i j i j m
n n T n

j ji i m

C Cr det J J C
C C det JJ C

&

' '  (4) 

*%$$+, Note: Following identities in combinatorics are used in the proof. 

 
!=

!( )!
f

g

fC
g f g&

 

( )=f f
g f gC C &   

Case 1: )(= mni & .  
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Note 

  
( )

2 2 2

=1 =1 =1
= = = 1.

nn nn mi m

j j j
j j ji i i

CC C
r r r

&

' ' '  (5) 

This equality follows from the Binet-Cauchy Theorem, because for )(= mni &  

  
=1

( ) = ( ).
n

m
T T

i j i j
j

C
det JJ det J J'  (6) 

Case 2: )(< mni & .  
Let m

k
c R# , denote the thk  column of J  ( 1=k  to n ). Then, 

 1 2 ...
= ,nc c c

J

( )
* +
* +
* +
* +
, -

 

and 

  1 1 2 2= .T T T T
n nJJ c c c c c c. . .#  (7) 

Let tmn =)( & .  
By Binet-Cauchy Theorem, 

  
=1

( ) = ( ).
n

m
T T

t j t j
j

C
det JJ det J J'  (8) 

Suppose i  actuators fail at a time from n  actuators )<( ti . This leads to a reduced Jacobian 
matrix 

ji
J  with }{1,2,...,

i

n Cj# . Without loss of generality, we may assume that the actuators 
corresponding to last i  columns fail. This says that all the reduced Jacobian matrices can be 
completely expressed by 

ji
J  with }{1,2,...,

m

in Cj &# . Note that although this loss of generality 
argument is not applicable to the reduced Jacobian matrix, equation (7)  makes it clear that 
the argument is valid for the product of the reduced Jacobian matrix and its transpose. The 
number of actuators remaining is )( in & . The number of ways in which the failures can 
happen at a time are

i

nC . In other words, 
i

nC  = 
)( in

nC
&

 is the number of ways in which )( in &  
un-failed actuators can be chosen from n actuators. So, there will be 

i

nC  such reduced 
Jacobian matrices, 

ji
J , where }{1,2,...,

i

n Cj# . 
Apply the Binet-Cauchy Theorem to a representative reduced Jacobian matrix

ji
J , denoted 

by 1

ji
J .  

Then, we have 

                                           
).(=)( 11

)(

1=

11 T

jtjt

m
in

j

T

jiji
JJdet

C
JJdet '

&

                                                  (9) 
Similarly,   
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( )

2 2 2 2

=1
( ) = ( ).

n i
m

T T
i j i j t j t j

j

C
det J J det J J

&

'  (10) 

In general,   

 
( )

=1
( ) = ( ).

n i
mn n n nT Ti i i i

i j i j t j t j
j

CC C C Cdet J J det J J
&

'  (11) 

Note that all of the 
m

in C)( &  terms appearing on the R.H.S. of equation (9) are exactly those 
terms on the R.H.S. of equation (8) which do not have the eliminated i  columns in their sub-
matrices

jt
J . Moreover, each equation from ((9) - (11)) has one term on the L.H.S and 

m

in C)( &  
terms on the R.H.S and there are 

i

m C  such equations. 
Using equations ((9) - (11)) to add all possible 

i

nC  reduced Jacobian matrices 2

ji
J , 3

ji
J , ..., 

i
n

ji

CJ  i.e. taking the summation of all possible 
i

nC  reduced Jacobian matrices,  

1 1 2 2( ) ( ) ( )
n nT T Ti i

i j i j i j i j i j i j
C Cdet J J det J J det J J. . .$  

( ) ( )
1 1 2 2

=1 =1
= ( ) ( )

n i n i
m m

T T
t j t j t j t j

j j

C C
det J J det J J

& &

. .' ' $  

 
( )

=1
( ).

n i
m n n Ti i

t j t j
j

C C Cdet J J
&

. '$  (12)  

  Now comparing equation (8) with equation(12), each term in the R.H.S. of (12) is a term on 
the R.H.S. of (8). Choose a particular term on the R.H.S. of (8), for example )(

11

T

tt
JJdet  This 

term will occur in only those Tp

ji

p

ji
JJdet  1=(p  to )

i

nC  for which p

ji
J  contains exactly those n  

columns in 
1
J

t
. For n  given columns, the number of columns left to choose for

ji
J ; with i  

columns eliminated is )( mn & ; from which we choose the remaining )( imn &&  columns. 
Therefore, the number of occurrences for )(

11

T

tt
JJdet  will be

)(

)(

imn

mn C
&&

& . 
This is true for each term on the R.H.S. of(8). Furthermore, we also know that each term 
from the 

m

in C)( &  terms appearing on the R.H.S. of 
i

m C  equations ((9) - (11)) occurs in the 
R.H.S. of equation (8).  
Dividing equation (12) by (8), we have 

 
1 1 2 2

( )
( )

( ) ( ) ( )
= .

( ) ( ) ( )

n nT T Ti i
i j i j i j i j i j i j n m

n m iT T T

C Cdet J J det J J det J J
C

det JJ det JJ det JJ
&

& &. . .$   (13) 

Therefore,   

 2 ( )
( )

=1 =1

( )
= = .

( )

n n T
i i i j i j n m

j n m iT
j ji

C C det J J
r C

det JJ
&

& &' '  (14) 

Dividing both sides by 
i

nC  to take the mean and noting that,   
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( )

( )
( ) = ,

nn i
n m m

n m i in
m

C
C C

C

&
&

& &  (15) 

the result follows.   
#   

This proof leads to the definition of optimal fault tolerant manipulability. 
-#+./.0.$/: A manipulator operating about a single point in the workspace is said to be 
optimally fault tolerant for a given number of failures i  if for all }{1,2,...,

i

n Cj#  

  =i jr c  (16) 

where c  is a constant. 
 It is clear from Theorem 1 that if post-fault relative manipulability for certain cases of 
failure are higher than the optimal fault tolerant manipulability value, then for other worst 
cases of failure, post-fault relative manipulabilities are extremely low. This has precisely 
been the motivation for developing optimally fault tolerant manipulators and the above 
definition arises as a direct consequence. 
1$%$223%4'5)'A manipulator characterized by "#J  and operating about a single point in the 
workspace is optimally fault tolerant to i  faults if 

  
( )

=
n i

m
i j n

m

Cr
C

&

 (17)  

for all }{1,2,...,
i

n Cj# . 
*%$$+, Equation (16) defines manipulators with optimal fault tolerant manipulability for i  
faults. By Theorem 1, if each 

ji
r  is constant, c  is given by equation (1) 

#   
Roberts and Maciejewski (Roberts & Maciejewski, 1996) present a singular value 
decomposition approach to identify fault tolerant configurations for serial manipulators and 
describes a rigorous method to determine whether a given nominal configuration possesses 
optimal fault tolerant manipulability. The above theorem states a formulation which directly 
gives the value of optimal manipulability under a given number of failures, for any 
manipulator with a given number of actuators. In fact, the theorem proves that irrespective 
of the operating configuration, all manipulators having the same number of actuators, have 
the same value of optimal manipulability under a given number of failures. This new idea 
plays a key role in the design of fault tolerant serial manipulators. The following example 
illustrates this point. 
Suppose a fault tolerant serial manipulator is to be designed such that it has 3  degrees of 
freedom 3)=(m  and it is desired to have an optimal fault tolerant manipulability of 0.5  

0.5)=(
ji
r  under a single-actuator failure 1)=(i . This implies that the manipulator operating 

in the nominal configuration, should be able to sustain the failure of any actuator and retain 
half of its manipulability. Substituting all known values in equation (1), we get 4=n . This 
means that the manipulator has to have 4  actuators in order to have optimal fault tolerant 
manipulability for single failure. 



 Parallel Manipulators, Towards New Applications 

 

52 

Another implication of this theorem is significant in terms of understanding post-fault 
behavior of any manipulator. From equation (14), it is clear that if the value of 

ji
r  is quite 

close to 
)(

)(

imn

mn C
&&

&  for some j  then the reduction in manipulability is far more pronounced if 
a possible failure combination corresponding to some other j  were to occur. Taking this 
into account, it is possible to assemble the actuators in such a way that actuators which are 
more likely to fail (for example, actuators with actuators that are more likely to have 
manufacturing defects) correspond to those j  which give 

 
( )

> .
n i

m
i j n

m

Cr
C

&

 

This idea has a greater impact on the design of parallel manipulators. While actuator failures 
may cause a serial manipulator to stop functioning, actuator failures have a comparatively 
smaller effect on redundant parallel manipulators because they can retain kinematic 
stability. Therefore, the two consequences that can be applied to the design of serial 
manipulators are applicable to parallel manipulators as well.  
The most significant area of investigation where the above results influence parallel 
manipulator design is the choice of geometry. This area will be explored in the Section 5. 
3.3 Examples 
Some specific examples provide more insight to understanding this concept of optimal fault 
tolerant manipulability.  
 

Number of 
Nominal 
Actuators 

n  

Number of 
Failures 

i  

Sum of all 
possible 

2

ji
r  

Optimal Fault 
Tolerant 

Manipulability

7 1 1 0.377 
8 1 2 0.500 
8 2 2 0.189 
9 1 3 0.577 
9 2 3 0.288 
9 3 3 0.109 

Table 1. Optimal Fault-tolerant manipulability of 6-dof redundant manipulators  

It is clear from Table 1 that as the number of failures increases, the optimal fault tolerant 
manipulability decreases drastically, regardless of the geometry. Consider the example of  
any 8-actuator manipulator suffering from 2 simultaneous failures. The sum of squares of 
relative manipulabilities is 2 for 28 failure possibilities. This means that if some post-fault 
relative manipulabilities are more than the optimal fault tolerant manipulability (0.189), 
then the worst case values are far less than 0.189. Therefore, irrespective of the geometry of 
the 8-actuator manipulator, for worst cases of failure the relative manipulabilities will have 
negligible values. Hence, it is important to design manipulators that are optimally fault 
tolerant to a given number of failures. 
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Table 1 also provides another important inference which is significant from the design 
perspective. Any redundant manipulator gives very low optimal fault tolerant 
manipulability values for more than one failures, and these values decrease drastically with 
number of failures. For example, for two failures in an octopod the optimal fault tolerant 
manipulability is 0.189 and, for two and three failures in a nanopod the optimal fault 
tolerant manipulabilities are 0.288 and 0.109 respectively. This means that under the 
hypothesis of equal probability of failure for each actuator, it is not practical to design 
manipulators optimally fault tolerant to more than one fault. 

4. Symmetric orthogonal Gough Stewart platforms 
4.1 Gough Stewart platforms 
A Gough-Stewart Platform (GSP) is a parallel manipulator consisting of a base, a moving 
platform (or payload) and struts. The length of struts is controlled by actuators. The struts 
have spherical joints at the payload end and U joints at the base. To provide six degrees of 
freedom, six struts are commonly used. Figure 1 is a diagrammatic representation of a GSP. 
Payload attachment points and base attachment points are represented by 

i
p  and 

i
q  

( ,6}{1,2,3,4,5#i ) respectively. 
 

 
Fig. 1. Gough-Stewart Platform   

OGSPs are a special class of GSPs that provide kinematic and dynamic decoupled control. 
Therefore, OGSPs are being widely used in commercial, military and space applications. 
Scientists at Northrop Grumman Space Technologies (NGST) are currently experimenting 
with an 8-strut OGSP. More recent applications of OGSPs include laser tracking and 
pointing, ultra-precise manipulation (McInroy & Jafari, 2006) and robotic surgery (Wapler et 
al., 2003). The very nature of these applications makes maintenance or repair of 
manipulators very difficult. Moreover, a single failure may compromise the fulfilment of 
objective or cause costly downtime. As a consequence, it is desirable to design OGSPs which 
can sustain failures, while retaining an acceptable level of manipulability. Figure 2 shows 
one of the flexure jointed hexapods at the University of Wyoming. It has a mutually 
orthogonal geometry. 
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Fig. 2. A Flexure Jointed Hexapod at the University of Wyoming 

Recent research has shown that symmetric groups of struts can be used to generate OGSPs 
having desired properties at their home position (McInroy & Jafari, 2006) and several new 
results have been obtained. 
The following part of this section recapitulates important results from (McInroy & Jafari, 
2006). 

4.2 Kinematics of symmetric OGSPs 
The inverse Jacobian, M , of a GSP maps the generalized velocity of the payload to the 

corresponding joint velocities of each strut ( MV=!!
"

). It has the form:  

 
1 1

=

T T

T T
l l

u v
M

u v

( )
* +
* +
* +, -

" "

% %
" "

 (18) 

where 3, R#
ii
vu
"" , 

iii
upv
"""

$= . 
i
u
"  is the unit vector along strut i  and 3R#

i
p
"  is the moving 

platform attachment point of strut i . Please refer to Figure 1. Note that, even though M  is 
called the inverse Jacobian to comply with the robotics standard, its computation does not 
require inversion, thus it is well defined for all GSP. 
-#+./.0.$/6, Let )(

6
R

$
#

l
MM . Write   

= T TM U V( ), -  
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where U , )(
3

R
l

MV
$

# . We say #M  GSP, M  is a Gough-Stewart Platform, if:    
/ 1][11=)( #UUdiag T  
/ 0=)( VUdiag T  

 We say M  is a Weighted Orthogonal Gough-Stewart Platform, #M  w-OGSP, if #M  GSP 
and:    

/ KMM T  is a diagonal matrix for a diagonal K .   
Where IK =  these matrices become the Orthogonal Gough-Stewart Platforms. 
 

 

Fig. 3. [4 4] cylindrical OGSP with optimal fault tolerant manipulability 

(McInroy & Jafari, 2006) develops properties and designs of symmetrical weighted OGSPs. 
Struts that are geometrically symmetrical are treated together, so the entire OGSP is 
decomposed into m  different groups, with the thi  group having 

i
n  struts. Then   

 0 11 2= ... T

mn n n n"
 

is a vector of positive integers describing the number of struts in each group. The total 
number of struts in the GSP is then 

j

m

j nl ' 1== . Let 3, R#
ijij
vu
""

 correspond to the thi  strut in 
group j . Let ][=

12112111 mmnn
uuuuuU
"

#
""

#
""

 and ][=
12112111 mmnn
vvvvvV
"

#
""

#
""

. A GSP can then be found 

for these struts by letting ][= TT VUM . 
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Following is the summary of results in (McInroy & Jafari, 2006). 
*%$7$6.0.$/'8)  Conditions (a) and (b) in the GSP definition are satisfied if   

 = , =
ij ij

ij ij ij x ij yij ij ij ij

ij

S C

u S S v x v y v

C

2 3

2 3

2

( )
* +
* + .
* +
* +
, -

" " " "
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where xS
x

sin= , xC
x

cos= , R#
ijijijij
yx ,,,34 , and   
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Conversely, if #M  GSP, then M  may be represented by a parameterization given by (19) 
and (20).   
!"#$%#&'9)  Let all groups contain more than two struts, i.e. 2>min jj n . Then #M  w-OGSP 
if   

/ The same angle, 
j

4 , is used for all struts in group j , i.e. 
jij
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/ The same x component of v
"

, 
j
x , is used for all struts in group j , i.e. 

jij
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/ The same y component of v
"

, 
j
y , is used for all struts in group j , i.e. 

jij
yy = ,  

/ The same k , 
j
k , is used for all struts in group j , i.e. 

jij
kk = ,  

/ Struts in a group are rotated about the z-axis equal amounts, i.e. 
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jji
k,,34  may be freely chosen. x

"
 and my R#

"
 may be freely chosen to satisfy (F). 

Furthermore, if 2

i
6  denotes the thi  diagonal element of KMM T , then   
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In (Aphale, 2006) robust fault tolerance is defined as the property by which the rank of M 
equals 6 or the number of struts remaining after failures, whichever is minimum. Not all 
geometric designs of OGSPs are robustly fault tolerant. In fact, it has been proved that [3 3 2] 
geometry gives the only robustly fault tolerant design for 8- strut (octopod) OGSPs. This 
means that [3 3 2] geometry is the only one wherein, if any two struts fail, the rank of M 
remains 6. While robust fault tolerance guarantees motion in 6 degrees of freedom for a n - 
strut platform under any mn &  failures 6))(( &% nm , experiments made on the University of 
Wyoming octopod clearly show that robustly fault tolerant designs suffer from serious post-
fault stability problems due to poor conditioning. On the other hand, in many cases the 
design specifications may require a single failure tolerant architecture. For instance, in a 
typical case, it would be better to design an 8-strut OGSP which gives an optimal fault 
tolerant manipulability of 0.5 for a single failure, instead of designing a robustly fault 
tolerant 8-strut OGSP. This argument will be clearer from the example explained in the next 
section where a class of symmetric OGSPs having optimal fault tolerant manipulability is 
proposed. 

5. Fault tolerant Gough Stewart platforms 
5.1 Design 
For parallel manipulators, the problem of inverse kinematics is easier to solve. Therefore, in 
most literature on parallel manipulators, the inverse Jacobian, M , is used for study. 
:#&3%;, In this work, it is assumed that the Jacobian relating joint and Cartesian motion is 
constant. This is equivalent to considering that the operation is about a single point, rather 
than across a workspace. The rationale for making this assumption is that there are several 
high precision OGSP applications which demand operation over a very small workspace. 
These include high precision motion control for telescopes, scanning microscopes, 
integrated circuit fabrication, stiffness, precision pointing and vibration isolation. 
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As mentioned in Section 3, [4 4] redundant OGSPs are currently under investigation by a 
number of researchers. This section develops a more general class of symmetric OGSPs with 
optimal fault tolerant manipulability under one fault.  
A key characteristic of symmetric OGSPs is  rotational invariance. Rotational invariance of 
groups of struts can be clearly understood with the help of Figure 3, Figure 4 and Figure 5.  
Figure 3 represents a symmetric 8-strut OGSP, having  M given as, 

0.8660 0.0000 0.5000 0.1369 0.5969 0.2372
0.0000 0.8660 0.5000 0.5969 0.1369 0.2372
0.8660 0.0000 0.5000 0.1369 0.5969 0.2372

0.0000 0.8660 0.5000 0.5969 0.1369 0.2372
0.0000 0.5000 0.8660 1.0338 0.2372 0.1369
0.5000 0

& &
&

& & &
& & & &

& &
& .0000 0.8660 0.2372 1.0338 0.1369
0.0000 0.5000 0.8660 1.0338 0.2372 0.1369
0.5000 0.0000 0.8660 0.2372 1.0338 0.1369

( )
* +
* +
* +
* +
* +
* +
* +

&* +
* +&* +

&* +
* +
, -

 

It can be clearly seen that a strut failure in group 1 (Figure 4) or a strut failure in group 2 
(Figure 5) causes the same effective change in manipulability. 
 

 
Fig. 4. [4 4] cylindrical OGSP with one failure in group 1.    
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This prominent feature provides symmetric OGSPs with inherent optimal fault tolerant 
manipulability under the occurrence of a failure. Furthermore, for symmetric OGSPs it is 
possible to estimate post-fault reduction in manipulability by knowing the geometry. This is 
explained in the following theorem. 
!"#$%#&' <) For a [p q] (p >  3,q 7  3 or q >  3,p 7  3) geometry, satisfying  (A)- (F) in 
Theorem 4, the relative manipulability after a single failure in group [p] is given by 

j
r

1
 

where 
j
r

1
 is the optimal fault tolerant manipulability under one fault for an OGSP with [p p] 

geometry. For the remaining cases of failure i.e. those corresponding to group [q], the 
relative manipulability is given by 

j
r8

1
 where 

j
r8

1
 is the optimal fault tolerant manipulability 

under one fault for an OGSP with [q q] geometry. 
*%$$+, Consider a manipulator with [p q] (p >  3,q 7  3 or q >  3,p 7  3) geometry. Let 

p
M  

and 
q

M  denote the inverse Jacobian corresponding to each group. Then the composite 
inverse Jacobian matrix M  is given by 

  = .p

q

M
M

M
( )
* +
, -

 (27) 

Consider the case that a single link in group [p] fails. Then from rank one perturbation of a 
matrix, we have 

  1( ) = ( )(1 ( ) )T T T T
f fdet M M det M M p M M p&8 8 8 8.  (28) 

where 
f
p  represents the row of 

p
M  corresponding to the link failure and M 8  represents the 

inverse Jacobian matrix after failure. Then,   

 
1

( ) 1= .
( ) (1 ( ) )

T

T T T
f f

det M M
det M M p M M p&

8 8
8 8.

 (29) 

Using the Matrix Inversion Lemma for the expression on the R.H.S. of equation (29) 

  1( ) = 1 ( ( ) ).
( )

T
T T T

f f f fT

det M M p M M p p p
det M M

&8 8
8 8& .  (30) 

Using the formulation as in equation (7), we have 

 1( ) = 1 ( ( ) ).
( )

T
T T

f fT

det M M p M M p
det M M

&8 8
&  (31) 

Using conditions  (A)- (F) given in Theorem 4, for a [p q] geometry with equal strut stiffness, 
we have 

 1 2= , = ,i p i q2 2 2 2  
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1 2= , = ,i p i qx x x x  

 1 2= , = ,i p i qy y y y  (32)  

and 

  1
2 2 2 2 2 2

1 2 3 4 5 6

1 1 1 1 1 1( ) = [ ].TM M diag
6 6 6 6 6 6

&  (33) 

Note that 
f
p  also has a trigonometric parametrization given by Proposition 3.  

  = ,

p ij

p ij

p

T
f ij p ij

ij p ij

p

S C

S S

C

p S C C

C C S

S

2 3

2 3

2

3 2 3

3 2 3

2

( )
* +
* +
* +
* +
* +

.* +
* +
& .* +
* +
* +
* +
, -

 (34)  

and substituting equation (32) in equations ((23)-(26)), we get 

  2 2 2 2
1 2

1= = ( ),
2 p q
pS qS2 26 6 .  (35) 

 2 2
3 1= ( ) 2 ,p q6 6. &  (36) 

  2 2 2 2 2 2
4 5

2 21= = ( ( ) ( )),
2 2 26 6 . . .* * + +* +
* ' ( ) + ' ( )  (37) 

and 

  2 2 2 2 2
6 = ( ).p qp q

py S qy S2 26 .  (38) 

Substituting equations ((35)-(38)) into equation(33), we get 1)( &MM T  in terms of design 
parameters. Using this formulation of 1)( &MM T  into equation (31), then substituting equation  
(34) in equation (31) and simplifying the complicated trigonometric expression, we get 

  1( ) 3= 1 ( ( ) ) = 1 .
( )

T
T T

f fT

det M M p M M p
det M M p

&8 8
& &  (39) 

It is important to note that this expression does not depend upon q  or the particular 
geometric parameters 

ij
4 , 

ij
x , 

ij
y  and 

ij
3 . 
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Note that the optimal fault tolerant manipulability for any [p p] manipulator is given by 
equation (1) in Theorem 2. Hence, 

  
(2 1)

6
1 2

6

3= = 1 .
p

j p

C
r

C p

&

&  (40) 

Since the choice of p does not cause any loss of generality, we have 

  
(2 1)

6
1 2

6

3= = 1 .
q

j q

C
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C q

&

8 &  (41) 

#   
Results from this Theorem are plotted in Figure 6. Figure 6 depicts the change in values of 
the relative manipulability, for different geometries, under the occurrence of one failure. 
This Theorem proves the independence of the manipulability contributions of each 
symmetric group of a two-group OGSPs which may have different number of struts in each 
group. It is shown that within the group, any failure will give the same manipulability 
reduction even in any two-group OGSPs. Figure 6 depicts the change in relative 
manipulability under on failure, for symmetric OGSPs with different two–group 
geometrical designs.  
 

 
Fig. 5. [4 4] cylindrical OGSP with one failure in group 2.    
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Looking at Figure 6 it is now possible to estimate the level of post fault reduction in 
manipulability of symmetric OGSPs. Corollary 6 proves that all two-group OGSPs ( i.e. with 
[m m] (m >  3) geometries ) possess optimal fault tolerant manipulability. 
1$%$223%4' =)' Any 2s-strut OGSP with [s s] (s >  3) geometry generated by Theorem 4 
possesses optimal fault tolerant manipulability under one fault and its value is given by, 

  
(2 1)

6
1 2

6

=
s

j s

C
r

C

&

 (42) 

 

for all }{1,2,...,
1

2 Cj s# . 
*%$$+, Consider a manipulator with [p q] (p >  3,q 7  3 or q >  3,p 7  3) geometry. Substitute 
q = p = s. Using Theorem 5, 

  
(2 1)

6
1 2

6

=
s

j s

Cr
C

&

 (43) 

for all }{1,2,...,
1

2 Cj s# .   

 #   

 

Fig. 6. Variation of the relative manipulability under a single failure, for various two group 
geometries    
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For the particular case of a symmetric 8-strut OGSP introduced at the beginning of this 
section, 

1 = 0.5jr  for all }{1,2,...,8#j . 
 

This inherent property possessed by symmetric OGSPs can be put to a significant advantage 
in design. Therorem 5 and Corollary (6) allow freedom of designing symmetric OGSPs with 
a high value of nominal manipulability. For example, by Corollary (6) it is seen that an 8-
strut OGSP sustains  any single-strut failure while retaining half of its nominal 
manipulability. The optimal fault tolerant manipulability of symmetric OGSPs makes them 
a suitable choice for critical applications where failure tolerance is necessary. 

5.2 Singularities 
While designing OGSPs with optimal fault tolerant manipulability, it is important to 
identify symmetric OGSPs which may be rendered singular under the occurrence of one 
fault. At the onset of singularity, unexpected motions are possible and the manipulator 
cannot be controlled. This is highly undesirable and potentially destructive. The following 
Theorem develops the necessary and sufficient condition to identify optimal fault tolerant 
OGSPs with potential singularity problems. 
 !"#$%#&' >) Let M  be the inverse Jacobian matrix of an OGSP with two groups. Then, 

MM i
T

i
 is singular if and only if the group in which failure occurs has at most 3  struts. 

The following lemma is necessary to prove the Theorem. 
?#&&3'@)'For any nm$  matrix, M , 

  ( ) = ( ).Trank M M rank M  (44)  

Proof of lemma:  Clearly,   

 ( ) ( ).Trank M M rank M%  (45) 
 

Let 0=MxM T  for nx R# . 
Then,   

 
2, = , = = 0.TM Mx x Mx Mx Mx9 : 9 :  (46) 

Hence, 0=Mx .   

 #   
*%$$+'$+'!"#$%#&,  Suppose that MM i

T

i
 is singular. Then, 

rank ( ) 5T
i iM M % . 

 
 

Proposition 7  in (Aphale, 2006) determines the rank of M  for an OGSP, having p  groups 
of struts: 
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1

( ) = ( ( ),6)
p

prank M min rank M'  (47) 

where 
p

M  denotes the inverse Jacobian matrix of the thp  group. 
In the context of failures, this proposition directly implies 

  
1

( ) = ( ( ),6)
p

p
i frank M min rank M'  (48) 

where Mp
f

 denotes the inverse Jacobian matrix of the thp  group having f  strut failures 
within the group. That is, if =' . 
Applying Lemma 8 to equation (48), we have 

  
1

( ) = ( ( ),6).
p

T p T p
i i f frank M M min rank M M'  (49) 

 

The nominal OGSP under consideration consists of two groups of struts. Hence, 

  
2

=1
( ) = [ ( ),6]T T
i i f fe ee

e erank M M min rank M M'  (50) 

 

where 1 2 =f f i. . Theorem 1  in (Aphale, 2006) establishes that the maximum rank of the 
Jacobian matrix of a group of struts forming an OGSP is 3 . Therefore, MM i

T

i
 is singular if 

the group in which any failure occurs has at most 3  struts. The converse is immediate.   
 #   

:#&3%;,' It is worthwhile to note that unitarily equivalent Jacobian matrices (and inverse 
Jacobian matrices) have the same manipulability, and it may be readily checked that all 
single failure reduced inverse Jacobian matrices of a 2s OGSP with an [s s] geometry 
generated by Theorem 4 are unitarily equivalent. This observation highlights the fact that 
these designs produce manipulators with optimal fault tolerant manipulability. 

5.3 Application example: air borne laser (ABL) 
Currently, feasibility of missile defense using an aircraft equipped with a high energy laser 
is being explored. At the concept level, the system uses a mirror inside the fuselage which 
focusses a beam from a megawatt-class chemical laser. Optic and beam control systems 
keeps the beam locked on a small supersonic target hundreds of kilometers away. It is 
believed that ABL can destroy hostile theater ballistic missiles while they are still in the 
highly vulnerable boost phase of flight before separation of the warheads. ABL can operate 
above the clouds, where it is possible to autonomously detect and track missiles as they are 
launched, using an onboard surveillance system. The defense system acquires the target, 
then accurately points and fires the laser with sufficient energy to destroy the missile. 
Airborne optical or electro-optical systems may be too large for all elements to be mounted 
on a single integrating structure, other than the aircraft fuselage itself. An eight-legged six-
DOF OGSP (Octopod) is a perfect candidate to maintain the required alignment between 
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elements. However the various smaller integrating structures (benches) must still be isolated 
from high-frequency airframe disturbances that could excite resonances outside the 
bandwidth of the alignment control system. The combined active alignment and vibration 
isolation functions must be performed by flight-weight components, which may have to 
operate in a vacuum. The platform used must be able to perform the dual functions of low-
frequency alignment and high-frequency isolation (Keinholz, 1999). 
The manipulability requirements for OGSPs intended for such an application are very 
demanding and Aphale (Aphale, 2006) describes them in detail. It is also shown (Apahle, 
2005) that OGSPs are capable of meeting the manipulability requirements, making them 
suitable for the ABL application. Failure tolerance is imperative for this missile defense 
application. Furthermore, it is difficult to predict specific failures at the design stage and as 
such failure of any actuator is considered equally likely. If an equal reduction of 
manipulability is desired under a failure of  any strut, an OGSP with optimal fault tolerant 
manipulability is an excellent choice. 

6. Conclusions and future work 
6.1 Conclusions 
This work proves that for a certain class of parallel manipulators functioning about a single 
point in its workspace, the mean squared relative manipulability over all possible cases of a 
given number of actuator failures is always constant irrespective of the geometry of the 
manipulator. In this context, optimal fault tolerant manipulability is defined and quantified 
using a simple algebraic formulation. The definition is more suited to parallel manipulators 
since they can retain kinematic stability under failures which constitute loss of actuators.  
For micromanipulation, symmetric OGSPs can be designed to possess optimal 
manipulability under actuator failures. OGSP geometries that may be rendered singular due 
to faults can be identified and avoided. OGSPs with optimal fault tolerant manipulability 
are highly suitable for critical applications since they retain a reasonable and equal fault 
tolerant performance if  any actuator fails. For example, Figure 3 illustrates a cylindrical [4 4] 
OGSP that can be used in aerospace applications with ABL. These OGSPs will provide 
operational reliability critical to the application. 

6.2 Future work 
Currently most OGSPs are seen to have a very small range of motion in the joint space. In 
such scenarios, the assumption that the Jacobian matrix remains constant with respect to 
time, is valid. Recent applications demand OGSPs with a larger range of motion. The 
assumption of the Jacobian being constant does not hold validity in such cases. Investigating 
the fault tolerant characteristics of a manipulator Jacobian which will take into account the 
change with respect to time can be of great practical importance. It has recently been shown 
(Roberts, Yu & Maciejewski, 2007) that, regardless of a manipulator's geometry or the 
amount of kinematic redundancy present in a manipulator, no fully spatial manipulator 
Jacobian can be  equally fault tolerant to three or more joint failures. Due to these constraints 
in generalization, it would be useful to formulate manipulator Jacobian matrices that 
possess equal fault tolerance to specified scenarios involving multiple failures. In particular, 
weights can be assigned to relative manipulability indices corresponding to multiple failure 
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scenarios and optimized values of relative manipulability can be obtained based on the 
result derived in Theorem 1. Exploring the application of design and control techniques 
devised for OGSPs in areas of medical robotics and haptic interfaces can be considered. 
Robotics holds promise in standardized surgical procedures like eye surgery, knee surgery, 
etc. The theory developed thus far can be applied efficiently in medical applications where 
principles of robotics and computer vision combine towards a single objective. Multiple 
finger grasp mechanisms and other parallel manipulators have been considered for such 
applications. In these applications there is a need to withstand failures with almost no 
degradation in performance. It is possible to transfer many theories and techniques related 
to parallel manipulators to the analysis of multiple finger grasps with some modification.  
It would be worthwhile to consider optimizing control for grasps such that fault tolerance 
can be achieved. Internal force calculations have been done for parallel mechanisms like 
multi-finger grasp mechanisms (Kerr & Roth, 1986). Internal force issues in other forms of 
parallel manipulators have also been explored (Lebret, Liu & Lewis, 1993) (Hiller and 
Schneider, 1997). Literature on the internal forces generated in GSPs is limited. OGSPs being 
a very recently defined class haven't been explored with respect to the internal forces they 
generate and need to withstand. With redundancy comes more number of actuators than the 
required minimum and a large number of constraints associated with them. Under failures, 
internal forces will be a major factor in the dynamics and control of OGSPs. Generating 
OGSPs that provide equal tolerance to failures with respect to the dynamic manipulability 
index seems feasible. 
Finally, it is most important to recognize that the main contribution of this work is a 
combinatorial result in linear algebra. Numerous systems in various disciplines can be 
modeled by matrices. For instance, matrices are used to model power transmission and 
distribution systems. In matrix models where failures amount to elimination of rows and 
(or) columns, the theory of fault tolerance developed thus far would be useful and 
worthwhile extending. 
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1. Introduction     
The dynamic model of a mechanical system relates the time evolution of its configuration 
(position, velocity and acceleration) with the forces and torques acting upon it. The inverse 
dynamic model is important for system control while the direct model is used for system 
simulation.  
Serial structure manipulator dynamic modelling is a well established subject. So, recent 
developments have been oriented towards the improvement of numerical efficiency 
enabling their use in real-time control algorithms (Lilly, 1993; Naudet, 2003; Mata, 2002; Lee, 
2005; Featherstone, 2000). Parallel structure manipulators present a more complex problem, 
and, usually, the model algorithms cannot be generalized. When used in a real-time control 
framework the resulting models must be simplified as they usually demand a very high 
computational effort.  
The dynamic model of a parallel manipulator when operated in free space can be 
mathematically represented, in the Cartesian space, by a system of nonlinear differential 
equations that may be written in matrix form as 

 ( ) ( ) ( ) fxGxxxVxxI =+⋅+⋅ ,   (1) 

( )xI being the inertia matrix, ( )xxV ,  the Coriolis and centripetal terms matrix, ( )xG  a vector 
of gravitational generalized forces, x the generalized position of the mobile platform or end-
effector and  f  the controlled generalized force applied on the end-effector: 

 ( ) τxJf ⋅= T   (2) 

where τ is the generalized force developed by the actuators and J(x) is a jacobian matrix. 
The dynamic model of a parallel manipulator is usually developed following one of two 
approaches (Callegari, 2006): the Newton-Euler or the Lagrange methods. The Newton-
Euler approach uses the free body diagrams of the rigid bodies. The Newton-Euler equation 
is applied to each single body and all forces and torques acting on it are obtained. Do and 
Yang, and Reboulet and Berthomieu use this method on the dynamic modelling of a Stewart 
platform (Do & Yang, 1988; Reboulet & Berthomieu, 1991). They achieve their result 
introducing some simplifications on the legs models. Ji (Ji, 1994) presents a study on the 
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influence of leg inertia on the dynamic model of a Stewart platform. Mouly (Mouly, 1993) 
presents a simplified model for a variation of the Stewart platform, only taking into account 
the mobile platform. Dasgupta and Mruthyunjaya used the Newton-Euler approach to 
develop a closed-form dynamic model of the Stewart platform (Dasgupta & Mruthyunjaya, 
1998). This method was also used by other researchers (Dasgupta & Choudhury, 1999; 
Khalil & Ibrahim, 2007; Riebe & Ulbrich, 2003; Khalil & Guegan, 2004; Guo & Li, 2006; 
Carvalho & Ceccarelli, 2001). 
The Lagrange method describes the dynamics of a mechanical system from the concepts of 
work and energy. This method enables a systematic approach to the motion equations of 
any mechanical system. Nguyen and Pooran use this method to model a Stewart platform, 
modelling the legs as point masses (Nguyen & Pooran, 1989). Other researchers follow an 
approach similar to the one used by Nguyen and Pooran, but trying to increase the physical 
meaning of the obtained mathematical expressions (Liu et al., 1993; Lebret et al., 1993). Geng 
and co-authors (Geng et al., 1992) used the Lagrange’s method to develop the equations of 
motion for a class of Stewart platforms. Some simplifying assumptions regarding the 
manipulator geometry and inertia distribution were considered. Lagrange’s method was 
also used by others (Bhattacharya et al., 1998; Gregório & Parenti-Castelli, 2004; Caccavale et 
al., 2003). 
Unfortunately the dynamic models obtained from these classical approaches usually present 
high computational loads. Therefore, alternative methods have been searched, namely the 
ones based on the principle of virtual work (Wang & Gosselin, 1998; Tsai, 2000; Li & Xu, 
2005; Staicu et al., 2007), and screw theory (Gallardo et al., 2003). 
In this paper the authors present a new approach to the problem of obtaining the dynamic 
model of a six degrees-of-freedom (dof) parallel manipulator: the use of the generalized 
momentum concept.  
The manipulator under study may be seen as a variation of the Stewart platform, with the 
uniqueness of having all its actuators fixed to the base platform and only moving in a 
direction perpendicular to that base (Merlet & Gosselin, 1991). A prototype of this 
manipulator, the Robotic Controlled Impedance Device (RCID), was developed aiming a 
broad set of force-impedance control tasks. The obtained dynamic model requires a 
considerably lower computational effort than the one resulting from the use of classical 
Lagrange method. 
This paper is organized as follows. Section 2 describes the RCID parallel manipulator. 
Section 3 presents the manipulator dynamic model using the generalized momentum 
approach. In section 4 the computational effort of the RCID dynamic model is evaluated. 
Conclusions are drawn in section 5. 

2. Parallel manipulator structure 
The RCID is a 6-dof parallel mini-manipulator (Figure 1). Parallel manipulators are well 
known because of their high dynamic performances and low positioning errors (Chablat et 
al., 2004; Merlet, 2006). In the last few years parallel manipulators have attracted great 
attention from researchers involved with robot manipulators (Bruzzone, 2005), robotic end 
effectors (Vischer & Clavel, 2000), robotic devices for high-precision robotic tasks (Pernette, 
et al., 2000), machine-tools (Zhang & Gosselin, 2002), simulators (Kim et al., 2002), and 
haptic devices (Constantinescu et al., 2005). 
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Figure 1. Photography of the RCID 

The mechanical structure of the RCID comprises a fixed (base) platform and a moving 
(payload) platform, linked together by six independent, identical, open kinematic chains 
(Figure 2). Each chain comprises two links: the first link (linear actuator) is always normal to 
the base and has a variable length, li, with one of its ends fixed to the base and the other one 
attached, by a universal joint, to the second link; the second link (fixed-length link) has a 
fixed length, L, and is attached to the payload platform by a spherical joint. Points Bi and Pi 
are the connecting points to the base and payload platforms. They are located at the vertices 
of two semi-regular hexagons, inscribed in circumferences of radius rB and rP, that are 
coplanar with the base and payload platforms (Figure 3). 
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Figure 2.  A schematic view of the RCID mechanical structure 

For kinematic modelling purposes a right-handed reference frame {B} is attached to the base. 
Its origin is located at point B, the centroid of the base. Axis xB is normal to the line 
connecting points B1 and B6 and axis zB is normal to the base, pointing towards the payload 
platform. The angles between points B1 and B3 and points B3 and B5 are set to 120º. The 
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separation angles between points B1 and B6, B2 and B3, and B4 and B5 are denoted by 2φB 
(Figure 3). In a similar way, a right-handed frame {P} is assigned to the payload platform. Its 
origin is located at point P, the centroid of the payload platform. Axis xP is normal to the line 
connecting points P1 and P6 and axis zP is normal to the payload platform, pointing in a 
direction opposite to the base. The angles between points P1 and P3 and points P3 and P5 are 
set to 120º. The separation angles between points P1 and P2, P3 and P4, and P5 and P6 are 
denoted by 2φP (Figure 3). The main kinematic RCID parameters have been adjusted in 
order to maximize the manipulator dexterity (Lopes & Almeida, 1996) within a prescribed 
workspace: the payload platform may be positioned anywhere inside a sphere of radius 10 
mm (centred at a point of the line witch contains axis zB) and rotate ±15º around any axis 
containing the payload platform centre. This requires the actuators displacement of Δli = 70 
mm approximately. The main kinematic parameters values are shown in Table 1. 
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Figure 3. Position of the connecting points to the base and payload platforms 
 

Parameter Value 
rB 80 mm 
rP 40 mm 
φB 15º 
φP 0º 
L 97.98 mm 
Δli 70 mm 

Table 1. RCID main kinematic parameters 

The RCID prototype is powered by six DC rotary motors (28D11-222E.2, from 
PORTESCAP). A ball-screw based transmission converts motor rotation to actuator vertical 
translation. Linear position and acceleration of each actuator are measured, as well as 
Cartesian forces and moments applied to the payload platform. Actuators acceleration 
relative to the base platform is given by the difference between the signals of each actuator 
accelerometer and the base accelerometer. Potentiometric displacement transducers (RC13-



Dynamic Model of a 6-dof Parallel Manipulator Using the Generalized Momentum Approach 

 

73 

100 Bauform M, from MEGATRON), accelerometers (FA-208-15, Range ±5g, from 
EUROSENSOR) and a six-axis force/torque transducer (67M25A-I40, 200N, from JR3) are 
used. 
The RCID mechanical structure has been produced using, whenever possible, standard 
mechanical components. Nevertheless, several small parts have been purposely designed 
and manufactured. Physically, the RCID mechanical structure comprises two fixed identical 
parallel platforms, which have been carefully aligned both angular and axially. The bottom 
platform supports the six DC electric motors. It also supports a flange to connect the RCID 
to an industrial robot. The ball-screw transmissions (from STAR), the linear actuators, and 
the potentiometric displacement transducers are located between the two fixed platforms. 
The universal joints are steel standard parts (from HUCO) using needle roller bearings. The 
fixed-length links and the double spherical joints have been purposely designed and 
manufactured. The payload platform supports the force/torque transducer, which has an 
ISO interface that may be used to attach a tool. The RCID maximal height is approximately 
530 mm (when the payload platform is at its farthest position). Maximum diameter is 
approximately 265 mm (corresponding to the fixed platforms diameter), and total mass is 
about 9.7 kg. Maximum payload platform velocity along vertical direction is 220 mm/s and 
maximum payload capability is 5 kg. 
For kinematic modelling purposes, and attaching frames {P} and {B} to the payload and base 
platforms, respectively, the generalized position of frame {P} relative to frame {B} may be 
represented by the vector:  

 [ ] ( ) ( )[ ]TT

EoP
BT

BposP
BT

PPPPPPEBP
B zyx xxx == ϕθψ

|
  (3) 

where ( ) [ ]TPPPBposP
B zyx=x  is the position of the origin of frame {P} relative to frame {B}, 

and ( ) [ ]TPPPEoP
B ϕθψ=x  defines an Euler angle system representing orientation of frame 

{P} relative to {B}. The Euler angles constitute a minimal representation of a rigid body 
orientation (only three parameters). There exist twelve different Euler angle systems, 
according to the sequence of the performed elemental rotations (Sciavicco & Siciliano, 1996). 
The used Euler angle system corresponds to the basic rotations (Vukobratovic & Kircanski, 
1986): ψP about zP; θP about the rotated axis yP’; and ϕP about the rotated axis xP’’. This is 
equivalent to a rotation of ϕP about xB, followed by a rotation of θP about yB, and a rotation 
of ψP about zB. The rotation matrix is given by: 
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R   (4) 

S(⋅) and C(⋅) correspond to the sine and cosine functions, respectively. The chosen Euler 
angle system introduces a representation singularity at θP = 90º, that is, outside the allowed 
RCID workspace. 
The position and velocity kinematic models of the RCID are well known (Merlet & Gosselin, 
1991), being obtainable from the geometrical analysis of the kinematics chains. The velocity 
kinematics is represented by the Euler angles jacobian matrix, JE, or the kinematics jacobian, 
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JC. These jacobians relate the velocities of the active joints, the actuators, with the 
generalized velocity of the mobile platform: 

 ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=⋅=

EoP
B

BposP
B

EEBP
B

E
)(

| x
x

JxJl   (5) 

 ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=⋅=

BP
B

BposP
B

CBP
B

C ω
x

JxJl   (6) 

with 

 [ ]Tlll 621=l   (7) 

 ( ) EoP
B

ABP
B xJω ⋅=   (8) 

and (Vukobratovic & Kircanski, 1986) 
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Vectors ( ) BP
B

BposP
B vx ≡  and 

BP
Bω represent, by that order, the linear and angular velocity 

of the mobile platform relative to {B}, and ( ) EoP
B x represents the Euler angles time 

derivative. 

3. Dynamic modelling using the generalized momentum approach 
The generalized momentum of a rigid body, qc, may be obtained from the following general 
expression: 

 ccc uIq ⋅=   (10) 

Vector uc represents the generalized velocity (linear and angular) of the body and Ic is its 
inertia matrix. Vectors qc and uc and inertia matrix Ic must be expressed in the same frame of 
reference. 
Equation   (10) may also be written as: 
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where Qc is the linear momentum vector due to rigid body translation and Hc is the angular 
momentum vector due to body rotation. Ic(tra) is the translational inertia matrix and Ic(rot) the 
rotational inertia matrix. vc and ωc are the body linear and angular velocities. 
The inertial component of the generalized force acting on the body can be obtained from the 
time derivative of equation (10): 
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 ( ) cccccinec uIuIqf ⋅+⋅==   (12) 

with force and momentum expressed in the same frame.  

3.1 Mobile platform modeling 
The linear momentum of the mobile platform, written in frame {B}, 

BPQ , may be obtained 

from the following expression: 

 
BP

B
traPBP

B
PBP m vIvQ ⋅=⋅= )(   (13) 

IP(tra) is the translational inertia matrix of the mobile platform, 
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mP being its mass. 
The angular momentum,

BPH , also written in frame {B}, is: 

 
BP

B

BrotPBP ωIH ⋅= )(   (15) 

BrotP )(I  represents the rotational inertia matrix of the mobile platform, expressed in the base 

frame {B}. 
The inertia matrix of a rigid body is constant when expressed in a frame that is fixed relative 
to that body. Furthermore if the frame axes coincide with the principal directions of inertia 
of the body, then all inertia products are zero and the inertia matrix is diagonal. Therefore, 
the rotational inertia matrix of the mobile platform when expressed in frame {P} may be 
written as: 
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This inertia matrix can be written in frame {B} using the following transformation (Torby, 
1984): 

 T
P

B

ProtPP
B

BrotP RIRI ⋅⋅= )()(   (17) 

The generalized momentum of the mobile platform, expressed in frame {B}, can be obtained 
from the simultaneous use of equations (13) and (15):  
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where 
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is the mobile platform inertia matrix written in the base frame {B}. 
The combination of equations (8) and (15) results into: 

 ( ) EoP
B

ABrotPBP xJIH ⋅⋅= )(   (20) 

Accordingly, equation (18)  may be rewritten as: 
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EBP

B

BPBP |
xTIq ⋅⋅=   (22) 

T being a matrix transformation defined by: 

 ⎥
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AJ0
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The time derivative of equation (22) results into: 

 ( ) ( )
EBP

B

BPEBP
B

BPBPBineP
P

dt
d

||
xTIxTIqf ⋅⋅+⋅⋅==   (24) 

( ) BineP
P f  is the inertial component of the generalized force acting on {P} due to the mobile 

platform motion, expressed in frame {B}. The corresponding actuating forces, τP(ine), may be 
computed from the following relation: 

 ( ) ( )
B

ineP
PT

CineP fJτ ⋅= −   (25) 

The same inertial component of the generalized force acting on {P} due to the mobile 
platform motion, but now expressed using the Euler angles system, can be found by pre-
multiplying equation (24) by TT : 

 ( ) ( ) ( )
EBP

B

BP
T

EBP
B

BP
T

BineP
PT

EBineP
P

dt
d

|||
xTITxTITfTf ⋅⋅⋅+⋅⋅⋅=⋅=   (26) 

and, in a similar way, the corresponding actuating forces, τP(ine), may be computed from the 
relation: 

 ( ) ( )
EB

ineP
PT

EineP
|

fJτ ⋅= −   (27) 

This implies that: 
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Vector ( ) BineP
P F represents the force acting on the centre of mass of the mobile platform, 

expressed in the base frame, {B}, and vector ( ) EineP
P M represents the moment acting on the 

mobile platform, expressed using the Euler angles system. Thus, this representation does 
not allow a clear physical interpretation of ( ) EineP

P M . 

On the other hand, it can be said that 

 ( ) ( ) ( )[ ]TT

BineP
PT

BineP
P

BineP
P MFf =   (29) 

where ( ) ( ) EineP
PT

ABineP
P MJM ⋅= −  represents the moment acting on the mobile platform 

expressed, this time, in the base frame. 
From equation (24) it can be concluded that two matrices playing the roles of the inertia 
matrix and the Coriolis and centripetal terms matrix are: 

 TI ⋅
BP   (30) 

 ( )TI ⋅
BPdt

d   (31) 

It must be emphasized that these matrices do not have the properties of inertia or Coriolis 
and centripetal terms matrices and therefore should not, strictly, be named as such. 
Nevertheless, throughout the paper the names “inertia matrix” and “Coriolis and centripetal 
terms matrix” may be used if there is no risk of misunderstanding. 
On the other hand, from equation (26), the inertia matrix and the Coriolis and centripetal 
terms matrix, expressed in the Euler angles system, are: 

 TITI ⋅⋅=
BP

T

EP   (32) 

 ( )TITV ⋅⋅=
BP

T

EP dt
d   (33) 

3.2 Actuators modeling 
As the RCID actuators can only move perpendicularly to the base plane, their angular 
velocity relative to frame {B} is always zero. So, each actuator can be modelled as a point 
mass located at its centre of mass. 
The linear momentum of each actuator along direction zB, 

iAq , is obtainable from: 

 iAA lmq
i

⋅=   (34) 

where mA is the mass and il  the velocity of actuator i. 
Simultaneously considering the six actuators results into: 
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The use of velocity inverse kinematics and transformation T in equation  (35) leads to: 

 
EBP

B
CAA m

|
xTJq ⋅⋅⋅=   (36) 

The inertial component of the actuating forces, ( )ineAτ , due to actuators translation may be 
obtained from the time derivative of equation (36): 

 ( ) ( )
EBP

B
EEBP

B
EAAineA m

||
xJxJqτ ⋅+⋅⋅==   (37) 

Multiplying equation (37) by T
CJ  the inertial component of the generalized force acting on 

{P} due to actuators translation, expressed in frame {B}, is obtained as: 
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CAEBP
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CABineA
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xJJxJJf ⋅⋅⋅+⋅⋅⋅=   (38) 

The inertial component of the generalized force acting on {P} due to actuators translation, 
expressed using the Euler angles system, is: 
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The inertia matrix and the Coriolis and centripetal terms matrix, expressed in the Euler 
angles system, may be extracted from equation (39) as: 

 
( ) E

T
EAeqEA m JJI ⋅⋅=   (40) 

 
( ) E

T
EAeqEA m JJV ⋅⋅=   (41) 

These matrices represent the inertia matrix and the Coriolis and centripetal terms matrix of a 
virtual mobile platform that is equivalent to the six actuators. 

3.3 Fixed-length links modeling 
If the centre of mass of each fixed-length link, cmL, is considered to be located at a constant 
distance bcm from the fixed-length link to mobile platform connecting point (Figure 4) then 
its position relative to frame {B} is: 
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Equation (42) may be successively rewritten as: 
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BL
B

i
p being a vector expressed in frame {B}. 
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Figure 4. Position of the centre of mass of a fixed-length link i 

The linear velocity of the fixed-length link centre of mass, 
BL

B
i

p , relative to {B} and 

expressed in the same frame may be computed from the time derivative of equation (44): 
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Equation (45) can be rewritten as: 
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where the jacobian 
iBJ is given by: 
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being  JCij the elements of line i column j of matrix JC. 
The linear momentum of each fixed-length link, 

BLi
Q , can be represented in frame {B} as: 
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BL

B
LBL ii

m pQ ⋅=   (48) 

where mL is fixed-length link mass. 
Introducing jacobian 

iBJ and transformation T in the previous equation results into: 

 
EBP

B
BLBL ii

m
|

xTJQ ⋅⋅⋅=   (49) 

The inertial component of the force applied to the fixed-length link due to its translation and 
expressed in {B} can be obtained from the time derivative of equation (49): 

 ( )( ) ( )
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B
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B
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i m
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When equation (50) is multiplied by T
Bi

J  the inertial component of the force applied to {P} 
due to each fixed-length link translation is obtained in frame {B}: 

 
( )( ) ( )( )

( )
EBP

B
B

T
BLEBP

B
B

T
BL

BtraineL
LT

BBtraineL
P

iiii

i

i
ii

m
dt
dm

||
xTJJxTJJ

fJf

⋅⋅⋅⋅+⋅⋅⋅⋅=

⋅=
  (51) 

The inertial component of the generalized force applied to {P} due to each fixed-length link 
translation and expressed using the Euler angles system can be obtained pre-multiplying 
equation (51) by matrix TT: 
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|
  (53) 

The inertia matrix and the Coriolis and centripetal terms matrix of the translating fixed-
length link, expressed in the Euler angles system, may be extracted from equation (52) as: 

 ( ) ( )
TJJTI ⋅⋅⋅⋅=

iii B
T
B

T
LeqEtraL m   (54) 

 ( ) ( )
( )TJJTV ⋅⋅⋅⋅=

iii B
T
B

T
LeqEtraL dt

dm  (55) 

These matrices represent the inertia matrix and the Coriolis and centripetal terms matrix of a 
virtual mobile platform that is equivalent to each translating fixed-length link. 
The angular momentum of each fixed-length link can be represented in frame {B} as: 

 ( ) BL
B

BrotLBL iii
ωIH ⋅=   (56) 

It is convenient to express the inertia matrix of the rotating fixed-length link in a frame fixed 
to the fixed-length link itself, {Li}≡{

iii LLL zyx ,, }. So, 
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 ( ) ( )
T
L

B

LrotLL
B

BrotL iiiii
RIRI ⋅⋅=   (57) 

where  
iL

B R is the orientation matrix of each fixed-length link frame, {Li}, relative to the base 
frame, {B}. 
Fixed-length links frames were chosen in the following way: axis 

iLx coincides with the 
fixed-length link axis and points towards the fixed-length link to mobile platform 
connecting point, meaning that it is coincident with vector ai; axis  

iLy  is perpendicular to 

iLx and always parallel to the base plane, this condition being possible given the existence of 
a universal joint in the fixed-length link to actuator connecting point that negates any 
rotation along its own axis; axis 

iLz  completes the frame following the right hand rule and 

its projection along axis zB is always positive. With this choice matrix 
iL

B R becomes: 
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iii LLL yxz ×=   (61) 

So, the inertia matrices of the fixed-length links can be written as 
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where 
xxLI , 

yyLI  and 
zzLI are the fixed-length link moments of inertia expressed in its own 

frame. 
The angular velocity of each fixed-length link can be obtained from the linear velocities of 
two points belonging to it. If these two points are taken as the fixed-length link to actuator 
and the fixed-length link to mobile platform connecting points, the following expression 
results: 

 BiBi
P

BP
B

BP
B

iBL
B l

i
zpωvaω ⋅−×+=×   (63) 

As the fixed-length link cannot rotate along its own axis the angular velocity along iLi
ax ˆ= is 

always zero and so vectors ai and 
BL

B
i

ω are always perpendicular. This property enables 

equation (63) to be rewritten as: 
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or, 
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where jacobian 
iDJ is given by: 
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Introducing jacobian 
iDJ  and transformation T in equation (56) results into: 
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DBrotLBL iii |)( xTJIH ⋅⋅⋅=   (67) 

The inertial component of the generalized force applied to the fixed-length link due to its 
rotation and expressed in {B} can be obtained from the time derivative of equation (67): 
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When equation   (68) is pre-multiplied by T
Di

J  the inertial component of the generalized 
force applied to {P} due to each fixed-length link rotation is obtained in frame {B}: 
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The inertial component of the generalized force applied to {P} due to each fixed-length link 
rotation, ( )( ) EBrotineL

P
i |

f , expressed using the Euler angles system, can be obtained pre-

multiplying equation (70) by matrix TT: 
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 ( )( ) ( )( ) BrotineL
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ii
fTf ⋅=

|
 (72) 

The inertia matrix and the Coriolis and centripetal terms matrix of the rotating fixed-length 
link, expressed in the Euler angles system, may be extracted from equation (71) as: 
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 ( ) ( ) ( )( )TJIJTV ⋅⋅⋅⋅=
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d   (74) 

These matrices represent the inertia matrix and the Coriolis and centripetal terms matrix of a 
virtual mobile platform that is equivalent to each rotating fixed-length link. 
It should be noticed that equations (24), (38), (51) and (69) by providing expressions for the 
inertial component of the generalized force applied to {P} and expressed in {B} enable a clear 
physical meaning to the moments applied to {P}. 

3.4 Gravitational component of the RCID dynamic model 
Given a general frame {x, y, z}, with gz ˆ−≡ , the potential energy of a rigid body is given by: 

 ccc zgmP ⋅⋅=   (75) 

where mc is the body mass, g is the modulus of the gravitational acceleration and zc the 
distance, along z, from the frame origin to the body the centre of mass. 
The gravitational components of the generalized forces acting on {P} can be easily obtained 
from the potential energy of the different bodies that compose the system: 
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Vectors ( ) EBgraP
P

|
f , ( ) EBgraA

P
i |

f  and ( ) EBgraL
P

i |
f represent the gravitational components of the 

generalized forces acting on {P}, expressed using the Euler angles system, due to, in that 
order, the mobile platform, each actuator and each fixed-length link. Therefore, to be added 
to the inertial force components, these vectors must be transformed, to be expressed in 
frame {B}. This may be done pre-multiplying the gravitational components force vectors by 
the following matrix: 
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  (79) 
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4. Computational effort of the RCID dynamic model 
The computational effort of the RCID dynamic model obtained through the use of the 
generalized momentum approach is compared with the one resulting from applying the 
Lagrange method using the Koditschek representation (Lebret et al., 1993; Koditschek, 1984). 
As the largest difference between the two methods rests on how the Coriolis and centripetal 
terms matrices are calculated, the two models are evaluated by the number of arithmetic 
operations involved in the computation of these matrices. The results were obtained using 
the symbolic computational software Maple® and are presented in Table 2. 
 

 Lagrange Generalized 
Momentum 

 Add. Mult. Div. Add. Mult. Div.
Mobile platform 310 590 0 94 226 0 

Six actuators 3028 4403 30 724 940 18 
Translating link 751 1579 6 131 279 4 

Rotating link 2180 3711 7 355 664 7 
Total operations 20924 36733 108 3734 6824 84 

Table 2. Number of arithmetic operations involved in the computation of the Coriolis and 
centripetal terms matrices of the RCID dynamic model 
The dynamic model obtained by the generalized momentum approach is computationally 
much more efficient and its superiority manifests precisely in the computation of the 
matrices requiring the largest relative computational effort: the Coriolis and centripetal 
terms matrices. 
The proposed approach was used in the dynamic modelling of a 6-dof parallel manipulator 
similar to a Stewart platform. Nevertheless, it can be applied to any mechanism. 

5. Conclusion 
Dynamic modelling of parallel manipulators presents an inherent complexity. Despite the 
intensive study in this topic of robotics, mostly conducted in the last two decades, additional 
research still has to be done in this area. 
In this paper an approach based on the manipulator generalized momentum is explored and 
applied to the dynamic modelling of parallel manipulators. The generalized momentum is 
used to compute the inertial component of the generalized force acting on the mobile 
platform. Each manipulator rigid body may be considered and analyzed independently. 
Analytic expressions for the rigid bodies’ inertia and Coriolis and centripetal matrices are 
obtained, which can be added, as they are expressed in the same frame. Having these 
matrices, the inertial component of the generalized force acting on the mobile platform may 
be easily computed. This component can be added to the gravitational part of the 
generalized force, which is obtained through the manipulator potential energy. 
The proposed approach is completely general and can be used as a dynamic modelling tool 
applicable to any mechanism. 
The obtained dynamic model was found to be computationally much more efficient than the 
one resulting from applying the Lagrange method using the Koditschek representation. Its 
superiority manifesting precisely in the computation of the matrices requiring the largest 
relative computational effort: the Coriolis and centripetal terms matrices. 
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1. Introduction 
High stiffness, low inertia, large accelerations, and high precision are desirable properties 
attributed to parallel kinematics machines (PKM). However, relatively small workspace and 
the abundance of singularities within the workspace partly annihilate the aforementioned 
advantages. Redundant actuation and novel redundant kinematics are means to tackle these 
shortcomings. Redundant parallel kinematics machines are ideal candidates for use in high-
precision applications, such as robot-assisted surgery. Their advantageous features promise 
to deliver the needed accuracy, stiffness, dexterity and reliability. Redundant actuation 
admits to eliminate singularities, increase the usable workspace, augment the dexterity, and 
partially control the internal forces. Actuator redundancy is also a means to improve fault 
tolerance, as redundant actuators can compensate the failure of other actuators. Redundant 
actuation increases the payload and acceleration, can yield an optimal load distribution 
among the actuators, or can reduce the power consumption of the individual drives. 
Actuator redundancy can also improve the force transmission properties and the 
manipulator stiffness. It can be purposefully exploited for secondary tasks, such as the 
generation of internal prestress and the generation of a desired compliance of the PKM. The 
first can be used to avoid backlash, whereas the second admits to homogenize the stiffness 
properties within the workspace. Kinematically redundant PKM, i.e. systems that possess a 
higher mobility then required for the task, allow to circumvent singularities as well as 
obstacles, and to increase the dexterity. 
The control of redundantly actuated PKM poses additional challenges, rooted in the 
resolution of the redundancy within the control schemes. Whereas, model-based control 
techniques can be directly applied to the control of non-redundantly actuated PKM, 
redundancy, however, brings up two specific problems, one is the computationally efficient 
resolution of the actuation redundancy, and the other is the occurrence of unintentional 
antagonistic actuation due to model uncertainties. 
This chapter is devoted to the modeling and control of redundantly actuated PKM. The aim 
of the chapter is to summarize concepts for dynamic modeling of redundantly actuated 
PKM, with emphasize on the inverse dynamics and control, and to clarify the terminology 
used in the context of redundant actuation. Based on a mathematical model, PKM are 
regarded as non-linear control systems. 
The chapter is organized as follows. A short literature review in section 2 is meant to 
familiarize the reader with current developments and research directions. In order to point 
out the potential of redundantly actuated PKM, a motivating example is given in section 3. 
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The PKM motion equations are recalled in section 4 as basis for the subsequent 
considerations. The associated non-linear control problem is formulated in section 5, and 
used for the definition of actuation and redundancy in section 6. Section 7 is devoted to the 
resolution of actuator redundancy. For the important case of simply-redundant actuation a 
closed form solution to the inverse dynamics problem is given, and actuator redundancy is 
exploited for secondary tasks. The applicability of standard model based control schemes to 
redundantly actuated PKM is studied in section 8. The effect of geometric uncertainties is 
analyzed and shown to lead to interference effects that are peculiar to redundantly actuated 
PKM. An amended version of the augmented PD and computed torque control schemes is 
proposed that eliminates these effects. The chapter closes with a conclusion and hints to 
open problems in section 9. 

2. Literature review 
Compared to serial manipulators PKM exhibit a much richer phenomenology, and give rise 
to more types of redundancy. A brief overview of redundancy in PKM can be found in 
(Merlet, 1996). Redundantly actuated PKM were analyzed with regard to their kinematic 
and dynamic properties, and in view of singularities in (Alba et al., 2007; Dasgupta & 
Mruthyunjaya, 1998; Firmani & Podhorodeski, 2004; Gardner et al., 1989; Kim et al., 2001; 
Kock & Schumacher, 1998; Kurtz & Hayward, 1992; Liao et al., 2004; Mohamed & Gosselin, 
1999; Müller, 2005; O’Brien & Wen, 1999; Valasek, 2002; Zhang et al., 2007). 
It was shown by a number of authors that redundant actuation is a means to eliminate 
singularities and so enlarges the usable workspace. Redundant actuation can be achieved in 
different ways, and there are two directions: the actuation of passive joints, and the 
inclusion of additional kinematic chains without increasing the PKM DOF. Most authors 
propose using additional chains, such as planar 3RRR (Alba et al., 2007; Buttolo & 
Hannaford, 2005; Kock & Schumacher, 1998), planar 4RRR (Valasek, 2002), spherical wrists 
(Kurtz & Hayward, 1992) and shoulder (Yi et al., 1994), Stewart platforms with one (O’Brien 
& Wen, 1999) or two (Valasek, 2002) additional struts, or the Eclipse (Kim et al., 2001). The 
improvement of kinematic manipulability or dexterity via redundant actuation has been 
investigated in (O’Brien & Wen, 1999). The optimal design of a robotic wrist aiming to 
maximize manipulability was addressed in (Kurtz & Hayward, 1992). Actuation 
redundancy was successfully applied to maximize and to homogenize the force output of a 
haptic force display (Buttolo & Hannaford, 2005). Other redundantly actuated PKM were 
developed for use as robot hands (Lee et al., 1998). Temporarily redundant actuation was 
proposed as a way to cope with singularities (Ganovski et al., 2004). The basic idea was to 
equip the PKM with more drives than needed, and to activate the ’excess drives’ whenever 
the main drives are unable to properly control the machine. Systems with variable topology 
are also temporarily redundantly. The inverse dynamics of such systems was addressed in 
(Nahon & Angeles, 1989). 
Kinematically redundant PKM possess multiple inverse kinematics solutions that can be 
applied for various purposes, such as maximizing dexterity or stiffness, avoiding 
singularities or obstacles, and minimizing drive power or the overall joint motions. A 
singularity avoiding inverse kinematics algorithm was proposed in (Alba et al., 2007) for a 
kinematically redundant planar 3RRR positioning PKM, where the concept of feasibility 
maps for serial manipulators, was adopted for the identification of working modes of PKM, 
i.e. singularity-free regions in joint space. Kinematic redundancy was further used in 
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(Mohamed & Gosselin, 1999) as a means to reshape the manipulator’s platform. Kinematic 
calibration and model identification is much more involved as shown in (Jeong et al., 2004) 
and (Abdellatif et al., 2007). 
The force capability of redundantly actuated PKM were investigated in (Nokleby et al., 
2005). A peculiarity of redundantly actuated PKM is the ability to generate internal 
prestress, via antagonistic control of the redundant drives, without generating end-effector 
forces. This feature was employed in (Chakarov, 2004; Kock & Schumacher, 1998; Kock & 
Schumacher, 2000; Müller, 2006; Yi et al., 1994) for the generation of a desired (tangential) 
EE-stiffness. Prestress was further used for the avoidance of joint backlash, which is critical 
in the presence of joint clearing and DC motor hysteresis (Müller, 2005; Valasek, 2002). 
Dynamic modelling is crucial for control of redundantly actuated PKM. Modelling and 
control were addressed in (Cheng et al, 2003; Liu et al., 2003; Müller, 2005; Nakamura & 
Ghodoussi, 1989). In (Cheng et al, 2003) model based motion control of redundantly 
actuated PKM was considered, and it was proposed to adopt the established computed 
torque and augmented PD control schemes (Murray, et al., 1993). In (Garrido, 2004) these 
control schemes were extended by allowing for measurement uncertainties, and in 
(Gourdeau et al., 1999) a computed torque control scheme without velocity measurement 
was proposed. An important issue for the inverse dynamics of redundantly actuated PKM is 
a goal-oriented resolution of the redundancy. The resolution is achieved using a weighed 
pseudoinverse, which is however computationally expensive to evaluate. For simply 
redundantly actuated PKM a closed form solution for the pseudoinverse was presented in 
(Müller, 2005). 
Another type of redundancy is related to the placement of sensors. Sensor redundancy was 
shown in (Yiu & Li, 2003) to be beneficial for the solution of the forward kinematics 
problem. 

3. A motivating example 
For demonstration purpose consider the RP/2RPR PKM in figure 1. This PKM has the DOF 
2, and is controlled by actuation of the three prismatic joints. The PKM could be uniquely 
positioned using two of the prismatic joints only. Therefore, the RP/2RPR is redundantly 
full-actuated. 
Manipulability/Dexterity/Singularities: An attractive feature of redundantly actuated PKM 
is the fact that singularities are eliminated that would occur in the non-redundant 
counterpart. A PKM is in a singularity if the EE-motion can not be determined by the 
actuated joints, reflected by a drop of its manipulability. Assumed, however, that an 
additional actuated kinematic chain is suitably attached to the moving platform, it shall be 
possible to overcome the indeterminacy. 
The kinematic capability of robotic manipulators can be quantified by manipulability or 
dexterity measures, introduced in (Murray, et al., 1993) and (Yoshikawa, 1985), that 
characterize the velocity and force transformation. The EE-twist is determined by a set of 
independent joint velocities via V = JE q 2, and away from singularities, q 2 = −1

EJ V. For 
redundant PKM there are more velocities of actuated joints than independent ones. But, 
there exists a Matrix A, such that the actuator velocities are q a = A q 2 = A −1

EJ V (section 4). 
Hence, the manipulability measures 
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characterize the velocity transmission from EE to actuators. Figure 2 shows the distribution 
of the two measures in the main part of the workspace of the RP/2RPR PKM. For 
comparison, the manipulability measures are also shown for a non-redundant RP/RPR 
PKM. The RP/2RPR PKM arises from the non-redundant PKM by addition of another RPR 
limb. Obviously the manipulability of the RP/2RPR PKM is much higher and more 
homogeneously distributed in the workspace. In particular, the singularities of the RP/RPR 
PKM, at the bottom of the workspace, are removed (singularities are marked by vanishing 
manipulability measure). 
Actuator loads: Beside eliminating singularities, additional redundant actuators allow to 
distribute the required work load among the drives. In this way, the individual drive loads 
can be reduced. The resolution and optimal distribution of control forces among the drives 
is achieved by a strategic inverse dynamics, as derived in section 7. In the RP/2RPR 
example, the third strut compensates a large part of EE-loads, that cause high control forces 
in the RP/RPR PKM. Clearly, redundant actuation increases the dynamical capability of the 
PKM. 
Stiffness/Compliance: Under working conditions, the accuracy of PKM is strongly related to 
its structural stiffness, and a realistic analysis must take into account the link flexibility. 
Using the same argument as for the load distribution among the drives, it is clear that the 
overall EE-stiffness increases with the addition of redundant struts. Clearly, the stiffness 
apparent at the EE depends on the PKM’s pose. 
Fault tolerance: It is clear from the manipulability analysis of the RP/2RPR PKM that the 
system is manipulable even if one of the actuators fails. For example, if the third actuator 
fails, then the PKM is still maneuverable as a RP/RPR manipulator, apart from singular 
postures. 
 

 
Figure 1. Redundantly full-actuated planar RP/2RPR manipulator. 



Redundant Actuation of Parallel Manipulators 

 

91 

 
Figure 2. Manipulability distribution for the redundantly actuated RP/2RPR and the non-
redundant RP/RPR manipulator. 

4. Dynamic modeling 
A PKM is a controlled, holonomically constrained multibody system (MBS), where the 
constraints embody the geometric closure conditions of kinematic loops. In applications 
where the manipulator interacts with its environment, the PKM is subject to additional 
possibly non-holonomic constraints. The latter will not be taken into account here. 
The Lagrangian motion equations of second kind for a PKM can be derived with the 
standard methods for MBS with kinematic loops (Maisser, 1997; Müller, 2006; Papastavridis, 
2002) as it was pursued in (Cheng et al, 2003; Liu et al., 2003; Müller, 2005; Nakamura & 
Ghodoussi, 1989). This proceeds by transforming the MBS with kinematic loops into an MBS 
with tree topology, subject to the closure constraint that enforce the loop closure. In each 
fundamental loop of the topological graph one joint (the cut-joint) is removed, and 
corresponding cutjoint constraints (closure conditions) are imposed to the resulting MBS 
with tree topology (Müller, 2006). Figure 3 shows the topological graph of the RP/2RPR 
PKM in figure 1. Two fundamental loops can be identified according to the indicated cut-
joints. Each loop gives rise to two closure constraints. 
Denote with q ∈Vn the vector of joint variables qa, a = 1, . . . , n (higher DOF joints are split 

into one DOF joints) of the tree MBS, where Vn := TnR × RnP if the PKM comprises nR 

revolute and nP prismatic/screw joints. q ∈ Vn is called the configuration of the PKM. A 
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configuration is admissible only if it fulfils the r geometric loop closure conditions. Now, the 
fundamental loops give rise to a set of r geometric constraint 0 = h (q) , h (q) ∈ Rr. In case of 
the RP/2RPR PKM in figure 3 this is a system of 4 constraints for the n = 6 joint variables of 
the tree system. Time differentiation yields the kinematic constraints 

 (1) 

The geometric constraints define the configuration space of the PKM 

 (2) 

 

 
Figure 3. Topological graph, and spanning tree of the RP/2RPR manipulator. 

The configuration space is the set of all admissible configurations of the PKM. V is an 
analytic variety and only locally a smooth manifold. The manifolds are separated by the 
singular points of V, where the rank of J changes. The latter are called c-space singularities. 
Their determination is vital for a reliable operation of the PKM. If the r constraints are 
locally independent, the local DOF of the PKM is δ := n − r. 
The admissible configuration q is locally determined by δ := n − r independent generalized 
coordinates. Denoting the vector of dependent and independent variables respectively with 
q1 and q2, the kinematic constraints are 

 (3) 

where J = (J1, J2), with J1 (q) ∈ Rr,r, J2 (q) ∈ Rr, δ. The independent coordinates can be chosen 

so that J2 is full rank, and the generalized velocities are 

 
(4) 



Redundant Actuation of Parallel Manipulators 

 

93 

F is an orthogonal complement of J, i.e. JF ≡ 0. The accelerations follow with q = F q 2 + 

F q 2. The constituent feature of any PKM is that a moving platform, carrying an end-
effector (EE), is connected to the base by several (possibly identical) kinematic chains (limbs, 
struts, legs) containing actuated joints. The EE is represented by an EE-frame. The 
configuration of the EE-frame w.r.t. a inertial (world) frame is represented by C∈ SE (3). The 
EE-map fE : Vn → SE (3), gives the EE-configuration C = fE (q) in the configuration q. The 
workspace of the PKM is 

 (5) 

The EE-Jacobian JE (q) : TqVn → se (3) yields the EE-twist V = JE (q) q , in terms of the state 

of the PKM. If τ ∈ se* (3) is an EE-wrench, then Q = T
EJ τ is the corresponding vector of 

generalized forces. 
Now, the dynamics of a force-controlled holonomic constrained MBS with kinematical tree 
structure is governed by the Lagrangian motion equations 

 (6) 

where G is the generalized mass matrix, C q  represents generalized Coriolis and centrifugal 
forces, Q represents all remaining, including generalized potential forces, and u are the 
generalized control forces. The Lagrange multipliers λ can be identified with the constraint 
reactions in cut-joints. 
For a PKM some of the possible control forces in u are identically zero, and only m control 
forces corresponding to active joints are present. Denote with c ≡ (c1, . . . , cm) the vector of 
generalized control forces in the actuated joints. Let A be the relevant part of F so that 
 FT u = AT c. Projecting the Lagrangian equations (6) onto the configuration space V, with the 
help of the orthogonal complement F and the relation (4), yields the Voronets equations 
(Maisser, 1997; Papastavridis, 2002) 

 (7) 

where 

 
Clearly, only those c that are not in the kernel of AT are effective control forces. The system 
(7) together with the kinematic constraints in (1) yield n differential equations in q ∈ Vn, that 

completely determine the MBS dynamics. 
Note that the motion equations are formulated in terms of minimal coordinates q ∈ Vn, for 

the purpose of deriving an unconstrained control system. One has to be cautious, however, 
since the removal of cut-joints can lead to dependent closure constraints that have no 
physical meaning. These artifacts are merely due to the parameterization. Geometrically, V 
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is only a section of the ’complete’ configuration space, including cut-joint variables. This 
issue is important for model based control, as pointed out in (Liu et al., 2003), since the 
actual controller is built upon the model (7), i.e. using a certain V. In fact, it may be 
necessary to switch between PKM models with different cut-joints. 

5. The associated non-linear control systems 
A PKM is a force-controlled holonomically constrained dynamical system, whose dynamics 
is governed by (7). The control purpose is to manipulate the EE, which embodies the 
system’s primary output. A PKM can be regarded as a second order control-affine control 
system on the configuration space V, which can be transformed to the first order control 
system on the 2n-dimensional state space TV 

 
(8) 

 
with state vector x := (q2, q 2). Therein 

 
(9) 

is the drift vector field, and the columns gi, i = 1, . . . ,m ≤  n of 

 
(10) 

define the control vector fields, via which the control forces affect the system. 
From a control point of view, one is interested in the controllability and observability of the 
PKM. That is, one is concerned with whether the PKM can be steered between two given 
configurations (Nijmeijer & van der Schaft). 

6. Actuation and redundancy 
The terms actuation and redundancy are differently used in the literature. In order clarify 
this notion a stringent definition is given based on the above control system. The following 
definitions refer to a regular configuration q, i.e. a configuration for which the orthogonal 
complement F and its submatrix A has full rank in a neighborhood of q in V. The 
dependence on q is omitted, and δ denotes the DOF. 
Definition 1. The rank of the input vector field is called the degree of actuation (DOA) 

α := rank (g) = rank (A) . 
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If α < δ the PKM is underactuated and if α = δloc the PKM is full-actuated. The degree of 
redundancy of the actuation is ρα := m − α. The PKM is called redundantly actuated if  
ρα > 0 and nonredundantly actuated if ρα = 0. 
Actuation refers to the effect that control forces have on the state change of a system. The 
above definition is in accordance with this notion, though it refers to the ability to influence 
the PKM’s acceleration. This is so because a PKM (as considered here) is a holonomically 
constrained system, so that prescribing the acceleration also determines the velocity and 
configuration, with known initial conditions. Actuation is a pointwise property, and the 
DOA changes in singular configurations. The effect of the actuation on the motion is 
described by the controllability of the system. This is a local property, i.e. considering the 
effects over a small time (Nijmeijer & van der Schaft). Redundantly actuated PKM are 
occasionally termed ’overactuated’. Notwithstanding that redundantly actuated PKM can be 
underactuated, a full-actuated PKM is completely actuated, and an improvement is 
impossible. Therefore, the term ’overactuation’ makes no sense. 
 

7. Resolution of actuation redundancy 
7.1 Inverse dynamics of redundantly full-actuated PKM 
The first step in navigating PKM consists in task/motion planning and a subsequent 
solution of the inverse kinematics, i.e. the determination of required actuator motions. The 
inverse dynamics problem is to determine the actuator forces required for this motion to 
take place. The DOA of a full-actuated PKM equals its DOF (δ = α). The number m = δ + ρ of 
active drives of a redundantly full-actuated PKM exceeds its DOF by ρ. Without loss of 
generality, the joint variables can be arranged as q ≡ (qp, qa), with qa ≡ (. . . , q2). Accordingly, 
the generalized control vector has the form u = (0, c), with c ≡ (c1, . . . , cm). The orthogonal 
complement takes on the form 

 
(11) 

 
where P contains the first n − m and A1 the remaining rows of − −1

1J  J2. A is full rank δ. The 
kernel of AT is ρ-dimensional, so that (7) can not be uniquely solved for the controls c. As 
consequence, 1) the load distribution among the drives is not unique, and 2) one can 
generate control forces in the null-space of AT that have no effect on the motion, so-called 
prestress. 
Let c0 ∈ Rm be a desired prestress vector, then a solution for the controls c such that  
(c − c0)T M(c − c0) → min is 

 
(12) 
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where (AT) +
M :=M−1A(ATM−1A)−1 is the weighed right pseudoinverse, and  

N TA := (Im −(AT )+AT ) is a projector to the null-space of AT . Complete knowledge of the 

system and the EE-load λ is assumed. M is a positive definite weighting matrix for the drive 
forces. 
For the important case of simply redundant actuation (ρ= 1) a close form solution, with  
M = I, was derived in (Müller, 2005). In this case A1 is a row vector, and 

 

 

(13) 

Note that no matrix inversion is necessary, which is numerically advantageous. 
On the basis of a preceding path planing and inverse kinematics solution of redundantly 
actuated PKM, the inverse dynamics is not unique and can take into account various goals. 
Actuation redundancy can be used to reduce the load of individual drives by strategically 
distributing the required control forces. On the other hand, the null-space components of the 
control forces can be employed for ’secondary’ tasks. 

7.2 Optimal distribution of control forces 
An immediate application of the redundancy is a purposeful allocation of the control forces 
(Kock & Schumacher, 1998). This is achieved via the weighing matrix M. Without prestress, 
i.e. with c0 = 0, the inverse dynamics solution (12) is such that cTMc →min. Usually M is a 
diagonal matrix, and its entries scale the control forces according to their drive 
performances. The lower the force capability of a drive the higher its weight. E.g., one can 
think of a lowpowered redundant drive, used to balance and reduce otherwise high force 
peaks in the main drives. 
Note, that these force considerations are essentially static, and do not take into account the 
PKM dynamics. For highly dynamic applications, the driving power distribution may 
significantly differ from the force distribution. 

7.3 Backlash avoiding control 
In (Müller, 2005; Valasek, 2002; Valasek, 2002) it was proposed to use internal prestress c0 to 
avoid actuator backlash, which refers to situations, where the sign of the control forces 
changes. One practical motivation for this is to eliminate the negative effects of joint 
clearings, and another is rooted in the observation of DC motor hysteresis. Also, for tendon 
driven PKM actuator signs must remain constant. 
The main idea is to include the generation of internal prestress in the control scheme of the 
PKM. The condition for backlash free control is that the magnitude of each particular control 
force ca remains above a certain level min

ac and that its sign remains constant during the 
considered task with a duration T. Denote with sa ∈ {−1, 1} the required sign of ca, then the 
condition 

 (14) 
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must be satisfied with min
ac > 0. 

In (Müller, 2005) a method for backlash avoiding control of simply rendundantly actuated 
PKM was presented. In this case AT has a one-dimensional null-space that can be 
parameterized by a prestress parameter σ (t), so that 

 
(15) 

with ϕ := G (q) q 2 + C (q, q ) q 2 + Q . 
Given a prescribed trajectory qd (t), the control problem at time instant ti consists in 
determining the prestress parameter σ (ti) such that (14) holds and an objective functional  
L (qd (ti) , σ (ti)) is minimized. The latter can be the weighed sum of squared control forces or 
the overall driving power. In summary the one-dimensional optimization problem 

 

(16) 

with c (q, q , q , σ) in (15), has to be solved at any time step. This can either be solved 
independently at each time instant, or the σ can be approximated as a function of time, 
which results in a smoother behavior. 
 
 

 
Figure 4. Planar 4RRR manipulator. 
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Figure 5. Prestress parameter and control torques for the EE motion in figure 4 with sign 
vector s = (−1, 1,−1, 1). 

For illustration purpose, we recall an example from (Müller, 2005), where the redundantly 
full-actuated planer PKM in figure 4 is navigated along the shown EE-path with fixed EE 
orientation. Figure 5 shows the drive torques, where a minimum drive torque of 0.2 Nm was 
required for prestress, with sign vector (sa) = (−1, 1,−1, 1). 

7.4 Stiffness control 
Stiffness or impedance control has long been proposed and developed for serial 
manipulators (Asada & Slotine, 1986). These concepts can straightforwardly be adopted for 
non-redundantly actuated PKM, thanks to the identical structure of the motion equations. 
Essentially, stiffness control (more precisely the control of the tangential stiffness since a 
PKM is a highly non-linear dynamical system) aims to mimic the force-deflection properties 
of an elastic medium, so that an applied EE-wrench causes an ’elastic’ evasive deflection. 
This is achieved by generating control forces as reactions to joint motions caused by EE-
motions. It is thus the result of a control cycle, which operates in discrete time steps. The 
actual behavior is therefore only ’elastic’ for sufficiently slow effects, due to the latency in 
the force response to due to a perturbation. 
Now, redundantly actuated PKM possesses the potential for another approach that does not 
suffer from the control latency. Redundant actuation allows for the generation of prestress, 
using controls in the null-space of AT. Since AT and thus TAN are configuration dependent, 

part of the null-space component of a given control vector c becomes effective when the 
configuration is perturbed. Hence, there is an immediate! response to EE-deflection. In order 
to exploit this effect, the control forces in the null-space of AT must be such that the change 
of AT due to a EE-perturbation yields a desired EE-wrench. This was attempted in (Müller, 



Redundant Actuation of Parallel Manipulators 

 

99 

2006; Yi et al., 1989). It turned out that, for the considered PKM, a large number of 
redundant actuators is required for stable control of all stiffness components. This 
requirement is eased if only some stiffness components are to be controlled. Moreover, so 
far, stiffness control was not taken into account in the PKM design, and other novel PKM 
structures may need lower actuator redundancy to control EE stiffness via prestress. 

8. PKM control 
Upon the motion equations (7), established non-linear control methods can be applied to 
PKM, and shall exhibit the known stability properties. Model based motion control of 
redundantly actuated PKM was addressed in (Cheng et al, 2003). It was proposed to adopt 
the established computed torque and augmented PD control schemes, where perfect 
knowledge of the PKM model as well as perfect measurement of position, velocity and 
acceleration was presumed. The assumption of perfect measurements was abandoned in 
(Garrido, 2004), and a standard PD control in conjunction with a velocity estimator was 
proposed. In (Gourdeau et al., 1999) a computed torque control scheme without velocity 
measurement was proposed. Common to the control methods proposed so far, is the 
assumption of a perfect model. Robust control of redundantly actuated PKM has not yet 
been attempted. 
In the following we briefly recall the standard model bases control schemes and their 
application to PKM control, and point out problems specific to redundantly actuated PKM 
that arise in the presence of model uncertainties. For notational simplicity the weighting 
matrix M = I is assumed. 

8.1 Model-based control schemes 
Two model-based control schemes frequently used for the control of robotic manipulators: 
the augmented PD and the computed torque control (Asada & Slotine, 1986; Murray, et al., 
1993). The unaltered augmented PD control attains the form 

 

(17) 

with the desired nominal path qd (t), and the tracking error e (t) := q (t)−qd (t) (Cheng et al., 
2003). The computed torque control law adopted for PKM is 

 
(18) 

setting v := 2
dq  −KD e −KPe. Perfect matching of model and plant presumed, both control 

laws applied to (7) result in exponential trajectory tracking for sufficiently large gains KD 

and KP, provided G  is regular. The latter assumption fails in configuration space 
singularities. 
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8.2 Model uncertainties 
The aforementioned control laws yields exponential stability for the nominal system only. 
Any real-life manipulator will differ from the nominal model used in the control scheme 
due to inevitable model uncertainties. There is a plethora of methods for the estimation of 
kinematic and other model parameters of serial manipulators, such as inertia, stiffness, and 
friction. Adaptations of these algorithms to PKM were proposed in (Valasek, 2002). Friction 
identification in particular was attempted in (Abdellatif et al., 2007). 
A parameter estimation, whatsoever, will not achieve perfect matching of model and plant. 
To tackle this uncertainties, a number of robust control schemes have been proposed for 
serial manipulators. Robust control is still a field of active research, and we will not attempt 
to develop a such for redundant PKM here. The interested reader is referred to (Asada & 
Slotine, 1986) for the fundamentals. It is nevertheless instructive to investigate the effect of 
model uncertainties. In contrast to non-redundant manipulators, where model uncertainties 
cause incorrect positioning, geometric uncertainties of redundantly actuated PKM may 
cause (possibly high) actuator loads that have no effect on the motion. 
Deviations from the nominal geometry alter the geometric constraints and thus the 
configuration space V. That is, a configuration q ∈ Vn that complies with the nominal 
constraints will not do so for the uncertain system. If the variations are small, the PKM 
configuration will still be expressible in terms of the independent coordinates q2. The 
constraint Jacobian in (1) changes according to 

 (19) 

Underlines indicate perturbed objects. For Δf small compared to f, and neglecting second 
order terms of Δ J, yields 

 (20) 

The perturbed orthogonal complement is then 

 
(21) 

The splitting (11) according to active and passive joints yields 

 
(22) 

where ΔA comprises the last ρ = m − δ rows of −1
1J  ΔJ1 −1

1J  J2 − −1
1J  ΔJ2. Thus, the 

pseudoinverse of AT is 

 
(23) 
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The projector to the null-space of AT is 

 
(24) 

The null-space difference makes part of the control forces ineffective causing unintentional 
prestress, and part of the control forces applied to the uncertain system are annihilated by 
Δ TAN  . 

The objects in the motion equations change accordingly, 

 (25) 

that give rise to the motion equations of the uncertain PKM 

 (26) 

Application of the augmented PD controller (17) to (26), results in the error dynamics 
governed by 

 

(27) 

with 

 (28) 

It is obvious that, with the perturbation S of the gain matrices, model uncertainties do not 
only affect the dynamics of the controlled system but also interfere with the PD feedback. 
This is a peculiarity of the redundant actuation. The extent of the effect depends on the 
degree of non-linearity of the geometric constraints. With, usually large gains, the parasitic 
control forces due to SKD e and SKPe may be large too. Moreover, the critical point to 
observe here is that these parasitic forces can never be equilibrated by adjusting the gains. 
Also observe that in view of ΔAT N TA c0, the control forces, deduced from the nominal 

model, are partially annihilated, whereas some null-space components (according to a 
secondary task, e.g. prestress generation) become effective and interfere with the motion 
control. The latter is due to the mismatch of the null-space of AT and AT that, with (24), can 
be inferred from 0≠T

T
A

NA . 
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8.3 Amended control schemes 
Parasitic control forces can be avoided by restricting the linear feedback to the subspace of 
independent coordinates q2, which are a subset of qa, since qa ≡ (. . . , q2). This gives rise to 
the following adapted augmented PD control law for redundantly actuated PKM 

 

(29) 

The adapted computed torque control law is 

 

(30) 

It is vital that both control schemes work stable for the nominal system. To see this, consider 
the error dynamics of the closed loop control law (29) that is governed by  
G (q) (ë+KD e  +KPe) = 0, and the error dynamics for (30) governed by G (q) ë +  

G (q, q ) e  + KD e + KPe = 0. Thereupon, with the classical stability results (Murray, et al., 
1993) it can be shown that the control laws (29) and (30) applied to the nominal system (7) 
are exponentially stable. 
Having concluded stability for the nominal system, it remains to show the claimed 
elimination of parasitic control forces. This is obvious from the closed loop dynamics 

 

(31) 

when (29) is applied to the uncertain system (26), and from 

 

(32) 

when the computed torque controller (30) is applied. 
Now the control forces act freely upon the uncertain system, in contrast to (29) and (30). 
Therewith the uncertainties affect the dynamics of the controlled PKM, but not the way the 
controls act upon the system. The second and third lines in (31) and (32) embody the 
uncertain dynamics that is not balanced by the controller. 
The proposed adapted control schemes shall motivate the development of tailored model-
based robust control concepts for redundantly actuated PKM. 



Redundant Actuation of Parallel Manipulators 

 

103 

8.4 Example 
For illustration purpose the effect of geometric uncertainties of the planar RP/2RPR PKM in 
figure 6 is analyzed. This is a fully-parallel but not symmetric PKM. There is no moving 
platform, and the EE is mounted on one of the limbs. The EE is connected to the base by one 
RP and two RPR chains. The PKM is obtained from a non-redundant RP/RPR by adding 
one RPR chain. 
 
 

 
 

Figure 6. Planar 2RPR/RP PKM with DOF 2. 

The drive units are mounted on the base at the corners of an equilateral triangle. A 
disturbance frequently encountered in setting up a PKM is the misplacement of joints. Now 
assume that one of the drive units is displaced on the ground plane as indicated in figure 6. 
This leads to a perturbed plant with input matrix AT. The control forces are deduced from 
the nominal model with AT . Consequently, the inverse dynamics solution (12) applied to the 
perturbed system (26) can not perfectly reproduce the desired control forces, due to  
AT (AT )+ ≠ I. This leads to desired forces in the null-space of AT becoming effective, due to 
AT TAN  ≠ 0. For a quantitative analysis the drive unite has been displaced by 5% of the 

triangle side length, as shown in figure 7. The perfect model and the perturbed plant are 
evaluated along the indicated EE path. For this PKM the null-space projector and thus 
AT TAN  is two dimensional vector (being zero for perfect matching). Figure 7 shows the two 

components evaluated for the EE positions on the indicated path. It turns out that the matrix 
S = ΔAT (AT)+ leads to uncontrollable counter action of the drives. For the RP/2RPR PKM 
this is a 2 × 2 matrix, which is identically zero for a perfect match of plant and model. The 
norm of S is shown in figure 7. It is clear that even for this simple PKM the effect of 
geometric uncertainties can not be neglected. 
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Figure 7. Effect of displacement of a drive unit of the PKM in figure 6. 
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9. Conclusions and open problems 
In this chapter the dynamics modeling of redundantly actuated PKM is reviewed, and the 
redundancy resolution is addressed. The resolution takes into account different secondary 
tasks, such as backlash avoidance and stiffness control. 
It was aimed to point out the potential of redundant actuation, but also the challenges that 
need to be addressed. In this contribution the effect of kinematic parameter uncertainties on 
the control of redundantly actuated PKM is analyzed. It is shown how geometric 
uncertainties effect the control system. The application of standard model-based control 
schemes to redundantly actuated PKM is shown not only to change the control system, but 
also to change the way in which control forces act upon the system. A consequence thereof 
is that the perturbation forces, due geometric uncertainties, can not be compensated by the 
actuation. To overcome these effects, an amended augmented PD and computed torque 
control scheme for redundantly actuated PKM is introduced. This is a first step that at least 
ensures the applicability of the control schemes. It shall be clear that robust control of 
uncertain redundantly actuated PKM is a critical issue for redundant PKM. 
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1. Introduction    
1.1 Instantaneous twist and wrench capabilities 
The instantaneous twist and wrench capability analyses are essential for the design and 
performance evaluation of serial and parallel manipulators. An instantaneous twist is a 
screw quantity that contains both angular and translational velocities of the end-effector, i.e., 

T T T{ ; } .V = vω  Whereas, a wrench is a screw quantity that contains the forces and moments 
acting on the end-effector, i.e., T T T{ ; } .F = f m  For a given pose, the required task of the end-
effector is to move with a desired twist and to sustain (or apply) a specific wrench. These 
kinematic conditions are achieved with corresponding joint velocities ( )q  and joint torques 
( ),τ  respectively. The relationship between the task and joint spaces is defined by the well 
known linear transformations: 

 =x Jq   (1) 

 T= J Fτ   (2) 

where J  is referred to as the Jacobian matrix.  
In addition, an extended problem can be formulated as the analysis of the maximum twist 
or wrench that the end-effector can perform in the twist or wrench spaces, respectively. The 
knowledge of maximum twist and wrench capabilities is an important tool for achieving the 
optimum design of manipulators. For instance, by being able to graphically visualize the 
twist and wrench capabilities, comparisons between different design parameters, such as the 
actuator torque capabilities and the dimensions of the links, can be explored. Also, the 
performance of an existing manipulator can be improved by identifying the optimal 
capabilities based on the configuration of the branches and the pose of the end-effector.  
This work focuses on the wrench capabilities of planar parallel manipulators (PPMs), the 
geometric interpretation of their wrench polytopes, the derivation of wrench performance 
indices, and how the inclusion of redundancy affects the performance of parallel 
manipulators (PMs). The wrench capability analysis of a manipulator depends on its design, 
posture, and actuator torque capabilities.  
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For a 3-degree-of-freedom (DOF) planar manipulator, the wrench F  is a screw quantity that 
contains the two components of the force on the plane (fx and fy) and the moment normal to 
the plane (mz). The problem of finding the wrench capabilities of a manipulator involves the 
forward static force equation -T( = )F J τ  and the actuator output capabilities ( ).iτ  To date, 
three different approaches for determining wrench capabilities have been proposed in the 
literature: constrained optimization, wrench ellipsoid, and wrench polytope.  

1.2 Constrained optimization 
In general, the constrained optimization approach involves: an objective function that 
maximizes either the magnitude of the force f or the moment mz; one equality constraint 

-T( = )F J τ ; and a set of inequality constraints 
min max

( ),i i i≤ ≤τ τ τ  indicating the actuator output 
capabilities. Kumar and Waldron (1988) investigated force distribution in redundantly-
actuated closed-loop kinematic chains and concluded that there would be zero internal 
forces using the Moore-Penrose pseudo-inverse solution. Tao and Luh (1989) developed an 
algorithm that determines the minimum torque required to sustain a common load between 
two joint redundant cooperating manipulators. Nahon and Angeles (1992) described the 
problem of a hand grasping an object as a redundantly-actuated kinematic chain. The 
problem was formulated with both equality and inequality constraints and the torques were 
found by minimizing the internal forces in the system using Quadratic Programming. 
Buttolo and Hannaford (1995) analyzed the force capabilities of a redundant planar parallel 
manipulator. Torques were optimized using the ∞-norm resulting in higher force 
capabilities when compared to the pseudo-inverse solution. Nokleby et al. (2005) developed 
a methodology to optimize the force capabilities of redundantly-actuated planar parallel 
manipulators using an n-norm, for large values of n, and a scaling factor. Garg et al. (2007) 
implemented this approach to spatial parallel manipulators. 
This approach is usually slow due to the numerical nature of the algorithm and inaccuracies 
due to the existence of local minima. 

1.3 Wrench ellipsoid 
The wrench ellipsoid approach is based on bounding the actuator torque vector by a unit 
sphere T 1.≤τ τ  The torques are mapped into the wrench space with Eq.(2), yielding a force 
ellipsoid T T 1.≤F JJ F  If Singular Value Decomposition (SVD) is applied to J  i.e., T= ,ΣJ U V  
the principal axes of the ellipsoid can be determined as /k ku σ  where kσ  is the kth singular 
value and ku  is the kth column of matrix .U  These axes can be employed as wrench 
performance indices of the manipulator. This approach was introduced by Yoshikawa (1985) 
with the manipulability (twist) ellipsoid and proposed manipulability measurements. Also, 
Yoshikawa (1990) presented the duality between the twist and wrench ellipsoids concluding 
that axes of the ellipsoids coincide but their lengths are inversely proportional.  
For cooperating manipulators, Chiacchio et al. (1996) presented a complete analysis of 
wrench ellipsoids for multiple-arm systems, which involves external and internal forces. Lee 
and Kim (1991) (velocity problem) and Chiacchio et al. (1997) (static force problem) 
proposed to normalize the joint space variables (joint velocities and joint torques, 
respectively) when the actuators do not produce the same output. As a result, the resulting 
ellipsoid is defined as the pre-image of the unit sphere in the scaled joint variable space. 
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The wrench ellipsoid approach can be implemented easily and the required computation is 
immediate. However, this approach is an approximation because the joint torques are 
normalized T( 1)≤τ τ  yielding a hypersphere in the torque space. The correct model of the 
joint torques must be an m-dimensional parallelepiped in the torque space due to the nature 
of the extreme torque capabilities of each actuator, i.e., 

miniτ  or 
max

.iτ  

1.4 Wrench polytope 
The wrench polytope approach considers the complete region in which the actuator can 
operate. A comparison between the ellipsoid approach and the polytope approach is shown 
in Fig. 1. Assume a manipulator with two actuated revolute joints whose extreme 
capabilities are 

ext
1i = ±τ Nm, for i = 1, 2. Fig. 1a shows the generation of an ellipse (in 

general, an ellipsoid) as a result of mapping a circle (in general, a hypersphere). Fig. 1b 
shows the generation of a polygon (in general, a polytope) as a result of mapping a square 
(in general, a hypercube). Each plot contains two coordinate systems. The inner circle of Fig. 
1a and the inner square of Fig. 1b describe the torque limits in the torque space (bottom and 
left axes); whereas, the outer ellipse and polygon describe the wrench capabilities in the 
wrench space (top and right axes). The lines that connect the inner to the outer shapes 
illustrate the linear transformation. Note how the edges and vertices of the square and 
polygon correspond in both spaces. The areas comprised by these geometrical shapes 
represent the feasible capabilities in their corresponding spaces. The square is an exact 
representation of the torque capabilities; while, the circle is an approximation. For example, 
the upper-right vertex of the square is 1 2 1 Nm;= =τ τ although this torque combination is 
feasible, the circle model does not include it. Thus, modeling the torque capabilities as a 
square is better than as a circle. Fig. 1c shows how the circle and ellipse are inscribed within 
the square and polygon, respectively. It is important to mention that the principal axes of 
the ellipse are directed towards the vertices of the polygon. 
 

 
Fig. 1. Mapping of ellipsoids and polytopes from the joint space to the task space. 

In general, each actuator torque defines an orthonormal axis in .m  The extremes of each 
torque constrain the torque space with a pair of parallel planes along each axis. The feasible 
region in which the manipulator can operate is bounded by these pairs of parallel planes 
yielding an m-dimensional parallelepiped. 
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A linear transformation, such as the equation of the forward static force, Eq. (2), maps vector 
τ  from m  (joint torque space) to n  (wrench space). 
Rockafellar (1997) studied the properties of convex polyhedral sets. From his analysis, the 
following relationship is held through a linear transformation: Let τ  be the m-dimensional 
parallelepiped (a convex set) and -TJ  be the linear transformation from m  to .n  Then the 
resulting transformation -TJ τ  leads to another convex polyhedral set ( )F  in n  and it 
contains a finite number of facets. 
Kokkinis and Paden (1989) introduced the concept of twist and wrench convex polytopes. 
The analysis was applied to a single serial manipulator and to two cooperating 
manipulators. Chiacchio et al. (1997) analyzed the wrench polytopes of redundant serial 
manipulators. Finotello et al. (1998) introduced two sets of indices that can be implemented 
to twist and wrench polytopes: the maximum isotropic value (MIV) and the maximum 
available value (MAV). These indices will be discussed in detail in Section 4. For 6-DOF 
manipulators, Finotello et al. (1998) proposed to analyze these indices with force and 
moment as separate entities. Gallina et al. (2001) analyzed the manipulability of a 3-DOF 
wire driven planar haptic device using polytopes. Lee and Shim (2004) expanded the 
concept to dynamic manipulability of multiple cooperating manipulators resulting in 
acceleration polytopes. Krut et al. (2004a) analyzed twist ellipsoids and polytopes in 
redundant parallel manipulators and established performance indices. They showed that 
there is another ellipsoid, besides the one derived with SVD, which is larger in volume and 
is fully inscribed within the polytope. Krut et al. (2004b) also studied force performance 
indices of redundant parallel manipulators and determined the isotropic wrench 
workspaces of planar wire-driven manipulators with multiple actuated limbs. Firmani et al. 
(2007a and 2007b) derived a set of wrench performance indices for PPMs. 

2. Redundancy 
2.1 Types of redundancy 
Merlet (1996) described that the inclusion of redundancy may lead to improvements in 
various analyses such as forward kinematics, singular configurations, optimal force control, 
and calibration. Lee and Kim (1993) defined a redundant parallel manipulator as one that 
has an infinite number of choices for either generating motion or resisting external forces. 
Also, Lee and Kim (1993) presented an analysis of different types of redundancy. Ebrahimi 
et al. (2007) classified redundancy into two categories: kinematic and actuation redundancy. 

2.2 Kinematic redundancy 
A manipulator is termed kinematically redundant when at least one of the branches can 
have self-motion while keeping the mobile platform fixed. Thus, there is an infinite number 
of possible solutions to the inverse displacement problem. This is the typical case of 
redundant serial manipulators. For parallel manipulators, this redundancy happens when 
the number of joints of at least one branch is greater than the number of joints that are 
required to provide the desired mobility of the mobile platform. This type of redundancy 
allows self-motion of the redundantly-jointed branch(es) improving the dexterity and 
workspace of the manipulator. A draw back of this type of redundancy is the increase of 
mass and/or inertia due to the addition of actuators on the mobile links. Despite the 
redundancy, there is only one vector force per branch acting on the mobile platform. Thus, 
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the load capability cannot be optimized, but as an alternative, the direction of the branch 
forces can be optimized by changing the posture of the redundantly-jointed branch(es). With 
this type of redundancy, each actuator can be manipulated independently and there are no 
internal forces that could damage the device. Kinematic redundancy can be employed to 
reduce or even eliminate singular configurations. Wang and Gosselin (2004) added an extra 
revolute joint to one branch of the 3-RPR PPM yielding a RRPR-2RPR layout. The 
singularity conditions were identified and the singularity loci were reduced. Ebrahimi et al. 
(2007) proposed the 3-PRRR PPM, a layout that contains joint redundancy in every branch. 
This manipulator can provide singularity free paths and obstacle avoidance by properly 
manipulating the actuated joints. 

2.3 Actuation redundancy 
A parallel manipulator is termed redundantly actuated when an infinite number of resultant 
force combinations can span the system of external forces. Thus, there is an infinite number 
of solutions to the inverse static force problem. The implementation of this redundancy 
requires a reliable control system because a small variation in the displacement may cause 
severe damage to the manipulator. There are two types of actuation redundancy: in-branch 
redundancy and branch redundancy. 
In-Branch Redundancy. Passive joints are replaced by active joints. For every redundant 
actuator added within branch(es), the number of the forces resisting an external load is 
augmented by one. This type of redundancy can be easily incorporated into an existing 
device. Nokleby et al. (2005) developed a methodology to optimize the force capabilities of 
the 3-RRR PPM using a high norm and a scaling factor. Zibil et al. (2007) determined the 
force capabilities of the 3-RRR PPM by using an analytical based method. Nokleby et al. 
(2007a) investigated the force-moment capabilities of different in-branch redundancy 
architectures. With in-branch redundancy, there is no change in the workspace of the 
manipulator. However, there is an increase of mass and/or inertia due to the addition of 
actuators. Firmani & Podhorodeski (2004) eliminated families of singular configurations by 
adding a redundant actuator to the 3-RRR PPM, yielding a RRR-2RRR layout. 
Branch Redundancy. An additional actuated branch is added to the system. For every 
additional actuated branch incorporated into the system, the number of forces acting on the 
mobile platform is augmented by one. Buttolo and Hannaford (1995) designed and analyzed 
the force capabilities of a 2-DOF 3-RRR PPM haptic device, where all three branches are 
pinned together. Gallina et al. (2001) analyzed the maximum force and moment of a four-
wire driven 3-DOF planar haptic device. Krut et al. (2004a) implemented performance 
indices, previously developed in Krut et al. (2004b) for velocity analysis, to 2-DOF parallel 
wire-driven manipulators. Different analyses of multi-actuated wires were considered. 
Nokleby et al. (2007b) investigated the force-moment capabilities of the 4-RRR, 4-RPR, and 
4-PRR PPMs. Firmani & Podhorodeski (2005) presented a methodology to identify singular 
configurations of planar parallel manipulators with redundant branches. The main problem 
of manipulators with branch redundancy is the reduction of their dexterity and workspace. 

3. Wrench polytope analysis 
3.1 Joint space parallelepiped 
Let n be the DOF of the task space coordinates and m be the number of actuated joints. The 
ith joint torque variable, which is bounded by 

miniτ  and 
max

,iτ  can be represented in the joint 
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torque space as two parallel planes in .m  With m joints, there are 2m planes or m pairs of 
parallel planes. An m-dimensional parallelepiped is formed with the combination of all of 
these parallel planes yielding the region of joint torque capabilities. If all the torque 
capabilities were equal, the m-dimensional parallelepiped would result in a hypercube. 
Also, if the magnitude of the extreme torques were equal, i.e., 

min maxi i=τ τ , the 

parallelepiped would be centro-symmetric; otherwise it would be skewed.  
A vertex of the m-dimensional parallelepiped defines the intersection of m extreme torque 
planes. Thus, a vertex occurs when all joint torques are at their extreme capabilities, i.e., 

 
T

1 2ext ext ext
...j mv ⎡ ⎤⎣ ⎦= τ τ τ   (3) 

 

where 
extiτ  denotes the extreme capabilities of the ith actuator, i.e., 

miniτ  or 
max

.iτ  The total 

number of vertices in the m-dimensional parallelepiped is 2m
Tm

v =  (Chiacchio et al., 1997). 

3.2 Linear transformation 
Visvanathan and Milor (1986) investigated the problems in analog integrated circuits while 
accounting for the tolerance variations of the principal process parameters. The problem 
involved the mapping of a parallelepiped under a linear transformation. Their mathematical 
formulation is similar to the one used for analyzing wrench capabilities in this work. Let the 
coordinates of the vertices of a parallelepiped in m  be ,jv  for j = 1, ..., 2 .m  Through a 

linear transformation from m  to ,n  such as -T= ,F J τ  the m-dimensional parallelepiped 
becomes a polytope (Visvanathan and Milor, 1986). A polytope is a convex region, i.e., any 
two points inside the polytope can be connected by a line that completely fits inside the 
polytope. An n-dimensional convex polytope is bounded by (n-1)-dimensional facets or 
hyperplanes, e.g., linear edges in 2  bounding a polygon or planar facets in 3  bounding a 
polyhedron.  
A polytope P can be completely characterized by mapping all the vertices of the 
parallelepiped and enclosing them in a convex hull, i.e., 

 { }-Tconvh , 1,...,2m
jv j= =P J   (4) 

 

where convh denotes a convex hull operator which encloses all the extreme points forming 
the feasible region of the torque space in the wrench space. A closed bounded convex set is 
the convex hull of its extreme points (Rockefellar, 1997).  
The total number of vertices in the polytope ( )Tn

v  depends on the dimension of the two 

spaces. 

3.3 Non-redundant planar manipulators 
For non-redundant manipulators (n = m) the number of vertices in the polytope equals the 
number of vertices in the m-dimensional parallelepiped, i.e., 2 ,m

T Tn m
v v= =  and the vertices 
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of the polytope are the image of the vertices of the m-dimensional parallelepiped (Chiacchio 
et al., 1996), i.e.,  

 -T
j jp v= J   (5) 

where jp  and jv  are the vertices of the polytope and parallelepiped, respectively.  

The linear transformation between the two spaces also makes that the edges and facets of 
the polytope are the corresponding image of the edges and facets of the m-dimensional 
parallelepiped. 
For a planar parallel manipulator the vertices of the wrench polytope are found as follows: 

 

-T

1,1 1,2 1,3 1ext

2 ,1 2 ,2 2 ,3 2ext

3,1 3,2 3,3 3ext

j j

x

y

z

p v

f
f

m

=

⎡ ⎤⎡ ⎤γ γ γ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ = γ γ γ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ γ γ γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

τ
τ
τ

J

  (6) 

where ,i jγ  denotes the elements of -T .J  There are eight vertices 3(2 )  due to the combination 

of the extreme torque capabilities, i.e., 
extiτ  can be either 

miniτ  or 
max

.iτ   

Fig. 2 illustrates the linear transformation of the torque capabilities of a non-redundant 
planar parallel manipulator from the torque space to the wrench space. Fig. 2 also shows the 
corresponding image of the vertices, edges, and facets between the parallelepiped and the 
polytope. 
 

 
Fig. 2. Linear transformation of a parallelepiped to a polytope of a non-redundant PPM and 
image projection of vertices, edges, and facets. 

The resulting wrench polytope of a non-redundant manipulator has the following 
characteristics:  

i. Any point outside the polytope is a wrench that cannot be applied or sustained; 
ii. Any point inside the polytope is achieved with actuators that are not working at 

their extreme capabilities; 

e
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iii. Any point on a facet of the polytope has one actuator working at an extreme 
capability; 

iv. Any point on an edge of the polytope has two actuators working at their extremes; 
v. Any vertex of the polytope has all three actuators working at their extremes. 

3.4 Redundant manipulators 
For redundant manipulators (n < m) the number of vertices in the polytope is less than the 
vertices of the m-dimensional parallelepiped, i.e., .T Tn m

v v<  In this case, the vertices of the 
polytope are formed with the mapping of some of the vertices of the m-dimensional 
parallelepiped, i.e., 

 -T
k jp v⊂ J   (7) 

with k < j. The points that do not form the vertices of the polytope are internal points in P.  
Let the potential vertices (pj) of the polytope be all the projected vertices of the m-
dimensional parallelepiped in .n  Thus, the potential vertices are determined as follows: 

 

-T

1ext
1,1 1,2 1,

2ext
2 ,1 2 ,2 2 ,

3,1 3,2 3,
ext

j j

x m

y m

z m
m

p v

f
f

m

=

⎡ ⎤
⎡ ⎤γ γ γ⎡ ⎤ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= γ γ γ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ γ γ γ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

τ
τ

τ

J

  (8) 

The number of external vertices may vary. For instance, the projection of a cube on a plane 
may lead to six external vertices (general projection) or four external vertices (projection 
normal to a coordinate axis).  
The number of vertices of the wrench polytope depends on the pose of the manipulator, 
which defines the elements of the linear transformation matrix, -T .J   
Finding the external vertices of a polytope can be computationally expensive. Generating a 
polytope through a convex hull has been studied thoroughly in the field of computational 
geometry and the goal has been to make a more efficient algorithm. Chand and Kapur 
(1970) proposed the so-called gift wrapping algorithm, where the facets of a polytope are 
found by determining the angles between one vertex and the rest of the points. The 
minimum and maximum angles correspond to the hyperplanes passing through that point. 
Visvanathan and Milor (1986) proposed an algorithm that searches in the directions that are 
orthogonal to each of the known hyperplanes. New vertices and hyperplanes are formed 
and the process is repeated. Bicchi et al. (1995) presented an algorithm that involves slack 
variables that transform the inequality constraints of the actuator limits into equality 
constraints. Lee (1997) proposed a method for determining the vertices of twist polytopes 
using vector algebra. Hwang et al. (2000) developed a recursive algorithm that removes all 
the internal points when first encountered. Hwang et al. (2000) also showed that even 
though the number of potential vertices grows exponentially (2 ),m  the number of external 
points increases linearly. 
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The scope of this work is not to develop a new algorithm for determining the external 
vertices and facets of a polytope, although some of the concepts that will be described in this 
work may be used to generate an even more efficient algorithm. 
The geometrical interpretation of the internal points is illustrated with the following 
example. Assume a planar manipulator with a redundant joint. Thus, the linear 
transformation maps the torque capabilities from 4  to 3.  
Fig. 3 illustrates the resulting polytope as a wire frame. This polytope is formed with the 
convex hull of the extreme points. The same polytope is repeated in all the sub-plots.  
Each sub-plot shows the regions in which one of the actuator torques is working at its 
extreme capabilities. The darker and lighter regions denote the two extremes

miniτ and
max

,iτ  

respectively. These regions are convex sets themselves, here defined as inner polytopes. The 
un-shaded region of each plot represents the space in which the actuator works within its 
capabilities.  
The overall polytope was generated with 16 potential vertices, of which 14 are external and 
2 are internal. The external vertices are illustrated with dots. Internal vertices lead to 
particularly low wrenches despite having all toques working at their extreme capabilities. 
 
 
 

             
 
 

Fig. 3. Polytope of a redundant planar parallel manipulator with shaded regions showing 
torques at extreme capabilities: a) Extremes of 1 ,τ  b) Extremes of 2 ,τ  c) Extremes of 3 ,τ  and 
d) Extremes of 4 .τ  

Based on these plots, the following conclusions can be made. While for a non-redundant 
manipulator each facet of the m-dimensional parallelepiped corresponded to a facet of the 
polytope; for a redundant manipulator this projection leads to volumes in the polytope. 
Also, each edge of the polytope is defined with the projection of three torques set at their 
extremes; while, each facet is formed with two torques at their extremes.  
Further actuation would result in more complicated polytopes and the number of internal 
points will increase exponentially (Hwang et al., 2000). In general, the number of 
geometrical entities in a wrench polytope is determined with the number of combinations 
involving torque at their extreme capabilities and the associated magnitude, e.g., say iext

τ  is 

at an extreme capability which can be of magnitude 
miniτ or

max
.iτ  The number of geometrical 

entities is summarized in Table 1. 

a) b) c) d)

1min
τ

1max
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2min
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2max
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Geometrical Entity 
(Internal and External)

Actuators at 
Extreme 

Number of Geometrical 
Entities 

Vertices m 2m  
Edges m-1 12m m−  
Facets m-2 32 ( 1)m m m− −  

Table 1. Geometrical entities of a wrench polytope for redundant manipulators. 

The resulting wrench polytope of a redundant manipulator has the following characteristics:  
i. Any point outside the polytope is a wrench that cannot be applied or sustained; 
ii. Any point inside the polytope is achieved with actuators that may or may not work 

at their extreme capabilities; 
iii. Any point on a facet of the polytope has m-2 actuators working at their extremes; 
iv. Any point on an edge of the polytope has m-1 actuators working at their extremes; 
v. Any vertex of the polytope has all m actuators working at their extremes. 

4. Wrench performance indices 
4.1 Operational conditions 
A wrench polytope represents the region in which the manipulator can apply feasible 
wrenches. Unfortunately, a major drawback of this approach compared to the ellipsoid 
approach is the efficiency of the algorithm. Determining the axes of the ellipsoid by 
applying SVD to J  is definitely more efficient than constructing a polytope. A small 
eigenvalue indicates that the manipulator requires large actuator torques to sustain an 
exerted wrench. 
Nonetheless, the best representation, from a design perspective, may not be the polytope 
itself, but rather a set of indices that characterize it. These points may lie on facets, edges, or 
vertices of the wrench polytope, and represent maximum/minimum values of either 
moments or forces. Thus, these points, which are referred to as wrench performance indices, 
allow the determination of either force or moment ranges.  
Under operational conditions, the manipulator performance is dictated by the requirements 
of the application. These requirements establish some parameters of moments and forces 
acting on the manipulator. This is, the range of forces can be determined based on moment 
requirements; similarly, the range of moments can be determined based on  
force requirements. For the force analysis, there are two ranges of forces that can be 
determined. Finotello et al. (1998) defined these forces as maximum available value (MAV) 
and maximum isotropic value (MIV). Herein, MAV and MIV are denoted as avF and ,isF  
respectively. 
Assume a wrench with a constant moment, thus the polytope is reduced to a polygon, i.e., 
the polytope is sliced at the constant moment yielding a polygon. The area enclosed by the 
polygon represents the force capabilities of the manipulator. The maximum available force 
( )avF  is the farthest distance from the center of the force space to the polygon. This force can 
be only applied in a particular direction and corresponds to a vertex of the polygon. The 
maximum isotropic force ( )isF  is the shortest distance from the center of the force space to 
the polygon. Fig. 4 illustrates the force polygon of a 3-RRR PPM, where the underline 
denotes the actuated joints and is indicated in the figure with , , and .1 2 3τ τ τ  For an arbitrary 
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direction α, the distance from the center of the force space to any point within the polygon is 
proportional to the magnitude of the force that can be applied or sustained. Fig. 4 also 
shows an arbitrary force vector T T[ ] [ cos sin ]x yf , f f , f= α αf =  and the maximum available 
( )avF  and isotropic ( )isF  forces. 
 

 
Fig. 4. Force polygon and force capabilities.  

In this work, six different scenarios of operational conditions in which the forces and 
moments interact are presented. Table summarizes the six operational conditions which 
lead to two force analyses and four moment analyses. 
 

Operational Condition Analysis 
Prescribed Moment 

Largest Allowable Force with an Associated 
Moment 

Force Analysis: 
Find Range of Available and 

Isotropic Forces 

Prescribed Force (magnitude and direction) 
Largest Allowable Moment with an Associated 

Force 
Prescribed Isotropic Force (magnitude) 
Prescribed Available Force (magnitude) 

Moment Analysis: 
Find Range of Moments 

Table 2. Operational condition and corresponding analyses. 

4.2 Explicit analysis 
To determine a particular performance index, Eq. (8) is rearranged as a linear system of 
three equations of the form Ax = b; where x is a vector that contains all of the unknown 
variables, either wrench or torque space coordinates, A is a coefficient matrix, and b is a 
vector that contains the torques that are set to their extreme capabilities.  
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If the performance index value lies on a vertex of the polytope, all m actuators will be set to 
their extreme capabilities. There are 2m  possible combinations due to the two extreme 
magnitudes of the torque outputs 

mini(τ  or 
max

).iτ   
If the performance index value lies on an edge of the polytope, m-1 actuators are set to their 
extreme output capabilities, while the remaining actuator torque is working within its 
output range and is referred to as being in transition ).t(τ  Torques that are not at their 
extreme capabilities are said to be in transition because they transfer from one torque limit 
to the opposite limit, e.g., from 

miniτ  to 
max

.iτ  A torque in transition is an unknown variable 

in vector x. There are 12m m−  combinations.  
If the performance index value lies on a facet of the polytope, m-2 actuators are set to their 
extreme capabilities and two torques are in transition. There are 32 ( 1)m m m− −  combinations.  
Once all the combinations are evaluated, the performance index can be determined by 
verifying the maximum f or mz among all of the combinations. If the problem involves 
finding a torque in transition, it is important to verify that this torque does not exceed its 
torque output capabilities. 
Table 3 summarizes the operational condition, the number of actuators working at their 
extreme capabilities, a list of known and unknown variables, and the number of 
combinations that are required to evaluate. This procedure is equivalent for both non-
redundant and redundant planar parallel manipulators. 
 

Operational Condition Actuators at 
Extremes 

Variables 
Known⎥ 

Unknown 

Number of 
Combinations 

Maximum Force with a Prescribed 
Moment pm pm( and )  av isF F  m - 1 mz ⎥  fx and fy 12m m−  

Maximum Allowable Force with an 
Associated Moment am am( and )  av isF F m ⎥ mz, fx and fy 2m  

Maximum Moment with a Prescribed 
Force pf( )zM  m - 2 fx and fy ⎥  mz 32 ( 1)m m m− −  

Maximum Allowable Moment with 
an Associated Force af( )zM  m ⎥ mz, fx and fy 1 

Maximum Moment with a Prescribed 
Isotropic Force pif( )zM  m - 2 f ⎥  mz and α 32 ( 1)m m m− −  

Maximum Moment with a Prescribed 
Available Force paf( )zM  

m 
m – 1 

⎥ mz, fx and fy 
f ⎥  mz and α 

2m  
12m m−  

Table 3. Wrench performance indices of planar parallel manipulators. 

4.2 Force analysis 
Maximum Force with a Prescribed Moment. If the moment must be preserved in the 
requirements of the application, either zero or any other value, the polytope is reduced to a 
polygon. In Fig 5a, the dark area illustrates the polygon at mz=0, while the other lines show 
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polygons at different moments. For this problem, mz must be specified yielding the 
following set of unknown variables: T[ ] .x y tf f=x τ  Thus, Eq. (8) is rearranged as follows: 

 

1ext
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 (9) 

The maximum available force pm( )avF  corresponds to the largest value of f that is evaluated 

with the combinations, where 2 2 .x yf f f= +  The maximum isotropic force pm( )isF  is 

determined as the shortest distance from the center of the force space to the polygon. 
pm pmand  av isF F  represent a point on an edge and a point on a facet of the polytope. 
Maximum Allowable Force with an Associated Moment. If a moment does not affect the 
requirement of the application, the manipulator can reach the largest available and isotropic 
forces. To achieve these forces a particular moment must be associated with them. The set of 
unknown variables of the Ax = b problem is T[ ] .x y zf f m=x  A force polygon may be 
generated by projecting the vertices of the polytope on the force plane. Fig 5 b illustrates the 
projection of the polytope vertices on the force space plane. The available and isotropic 
forces am amand(   )av isF F  are respectively the longest and shortest distances from the center of 
the force space to the projected polygon. 
 

      
Fig. 5. Force analysis: a) Maximum force with a prescribed moment and b) Maximum force 
with an associated moment. 

4.3 Moment analysis 
Maximum Moment with a Prescribed Force. For a fully described force (f and α), the force 
vector may be drawn within the polytope and the set of moments pf( )zM  that can be 
reached with this force can be determined. Eq. (8) is rearranged as an Ax = b problem with 

a) b)
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T[ ] .z t ta b
m=x τ τ  The largest and smallest mz that can be obtained while keeping the 

torques in transition within their capabilities define the range of pf .zM  Fig. 6a illustrates an 
arbitrary force and the vertical line represents the range of moments. 
Maximum Allowable Moment with an Associated Force. If the force does not affect the 
application, the maximum range of moments af( )zM  has an associated force, i.e., a specific 
force must be applied to achieve the largest moment. To find the maximum moment all the 
actuators are set to their maximum capabilities. To achieve the largest range of af

zM , the 
third row of Eq. (8) is arranged to obtain the combination of monomials that yields the 
maximum and the minimum mz. Thus, only a single evaluation is required for each extreme 
value. The highest and lowest vertices of the polytope represent this performance index. 
Maximum Moment with a Prescribed Isotropic Force. Assume that the manipulator is 
required to apply or sustain the same force in all directions, i.e., an isotropic force fis. The 
region of moments that can attain this force may be seen as a cylinder of radius fis that is 
fully contained within the polytope, as shown in Fig. 6b. The range of moments pif( )zM  is 
the height of the cylinder. The cylinder intersects facets of the polytope. This case cannot be 
solved by simply rearranging Eq. (8). As an alternative, the maximum and minimum pif

zM  
are determined by comparing the resulting isotropic moment associated with every plane of 
the polytope. Isotropy is ensured with the plane that yields the minimum of the maximum 
mz moment. A detailed formulation of this problem is described in Firmani et al. (2007a). 
Maximum Moment with a Prescribed Available Force. Assume that the manipulator is 
required to apply a large force regardless of its direction, i.e., available force fav. This case 
may be seen as the intersection of a cylinder of radius fav with a point on the polytope which 
is the farthest away from the mz=0 plane, as shown in Fig 6c. The range of moments paf( )zM  
is the height of this cylinder. The cylinder usually intersects an edge of the polytope, but in 
some particular cases the intersection may happen with a facet of a vertex of the polytope. 
 

                     
Fig. 6 Moment analysis. Maximum moment with a prescribed a) Force, b) Isotropic force, 
and c) Available force. 

5. Wrench workspaces 
5.1 Planar parallel manipulator architectures 
For three-branch PPM layouts, there are seven possible architectures: RRR, RPR, PRR, RRP, 
PPR, RPP, and PRP, where R and P denote a revolute and prismatic joint, respectively. Of 
these seven architectures, the PRR and the RRP are kinematically equivalent. Likewise, the 

a) b) c)
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PPR and the RPP. Considering only one kinematically equivalent architecture yields only 
five unique architectures. Eliminating those architectures with two prismatic joints, as they 
are not convenient for implementation as PPMs, leaves only the RRR, RPR, and PRR 
architectures to be studied. Based on these architectures, three actuation schemes are 
analyzed: non-redundant PPMs, in-branch redundant PPMs, and branch redundant PPMs. 
Non-Redundant PPMs. By considering the first joints actuated, the inertia of the mechanism 
is kept low allowing manipulators to be used for high-speed applications. Thus, the 
actuation layouts 3-RRR, 3-RPR, and 3-PRR are considered. Fig. 7 shows the schematics of 
the three non-redundant PPM layouts. The fixed and mobile platforms are similar in every 
case: the base triangle edge lengths are 0.5 m and the end-effector triangle edge lengths are 
0.2 m. For the 3-RRR, the lengths of the first and second links of each branch are 0.2 m. The 
torque limits of the actuators are ±4.2 Nm. For the 3-RPR, the torque limits are ±4.2 Nm and 
the prismatic joints’ extension limits are 0.0 to 0.4 m. For the 3-PRR, the prismatic joints’ 
orientations are 0°, 120°, 240°, the prismatic joints’ extension limits are 0.0 to 1.0 m and the 
force limits are ±10 N, while the lengths of the second links are 0.23 m. 
 

 
Fig. 7. Non-redundant PPM layouts: a) 3-RRR, b) 3-RPR, c) 3-PRR 

In-Branch Redundant PPMs. With this actuation scheme, the second joints of every branch 
are actuated yielding the 3-RRR, 3-RPR, and 3-PRR layouts. Fig. 8 shows schematics of the 
in-branch redundant PPM layouts. These PPMs have the same dimensions and actuator 
capabilities as the ones used for the non-redundant PPMs. In addition, for the 3-RRR and the 
3-PRR the second joint is actuated and the torque limits are ±2.1 Nm; whereas, for the 3-
RPR, the force limits of the prismatic joints are ±10 N.  
 

 
Fig. 8. In-branch redundant PPM layouts: a) 3-RRR, b) 3-RPR, c) 3-PRR 

Branch Redundant PPMs. An additional branch is added to the non-redundant PPMs 
yielding the 4-RRR, 4-RPR, and 4-PRR layouts. The same dimensions and actuator 
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capabilities used for the non-redundant PPMs are employed for this analysis. For the 4-PRR, 
the prismatic joints’ orientations are shown in Fig. 9c. 
 

 
Fig. 9. Branch redundant PPM layouts: a) 4-RRR, b) 4-RPR, c) 4-PRR. 

5.2 Wrench workspaces of planar parallel manipulators  
In this work, the platform orientations are held constant at 0° and the assembly modes for 
the RRR and PRR architectures are shown in Figs. 7 to 9. Four analyses are considered:  

a) Maximum force with a prescribed moment at mz = 0, i.e., pure force analysis,  
b) Maximum allowable force with an associated moment, i.e., absolute force analysis, 
c) Maximum moment with a prescribed force at f = 0, i.e., pure moment analysis,  
d) Maximum allowable moment with an associated Force, i.e., absolute moment 
analysis. 

The third analysis (f = 0) is a special case that also involves the operational condition of 
prescribed isotropic and available forces. Examples of prescribed isotropic and available 
forces workspaces, where f ≠ 0, can be found in Firmani et al. (2007b).  
Figs. 10 to 18 show the wrench capabilities of the previously described manipulators. These 
capabilities are presented in two dimensional plots whose axes indicate the location of the 
mobile platform throughout the workspace [m]. At each location, either the maximum force 
or maximum moment capability is determined and illustrated with a dot using a grayscale 
gradient. Nonetheless, some of the magnitudes were very large compared to the rest of the 
results in the workspace. Large values are caused by the proximity of the manipulator to a 
singular configuration and this spoils the overall grayscale gradient.  
Parallel manipulators are affected by inverse and direct singularities. An inverse singularity 
configuration usually occurs at the boundaries of the workspace. For the RRR architecture, a 
branch is either fully extended or folded back. For the RPR architecture, the displacement of 
a prismatic joint is zero. For the PRR architecture, the second link of a branch is 
perpendicular to the prismatic joint. Under these configurations, the manipulator cannot 
apply any force along one direction, but in theory it can sustain an infinite load. Similarly, 
the manipulator cannot apply any moment but in theory it can sustain an infinite moment, if 
an associated force goes to infinity. Since infinite wrench magnitudes would destroy the 
grayscale gradient, hence, the authors opted to cap these values. 
A direct singularity occurs when the branch resultant forces together do not span an 
external wrench, i.e., the branch resultant forces intersect at a common point (planar pencil). 
If the branch forces intersect at infinity, an external force, normal to the branch forces, 
cannot be sustained, i.e., 0.isf =  If the intersection occurs somewhere else, an external 
moment applied to the mobile platform cannot be balanced by the actuators, i.e., mz = 0. 
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Fig. 10. Wrench workspaces for the 3-RRR PPM. 

 
Fig. 11. Wrench workspaces for the 3-RPR PPM. 
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Fig. 12. Wrench workspaces for the 3-PRR PPM. 

 
Fig. 13. Wrench workspaces for the 3-RRR PPM. 
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Fig. 14. Wrench workspaces for the 3-RPR PPM. 

 
Fig. 15. Wrench workspaces for the 3-PRR PPM. 
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Fig. 16. Wrench workspaces for the 4-RRR PPM. 

 
Fig. 17. Wrench workspaces for the 4-RPR PPM. 
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Fig. 18. Wrench workspaces for the 4-PRR PPM. 

5.3 Discussion of the results 
The plots show regions where larger forces or moments can be applied/sustained. Table 4 
shows a numerical comparison of the different actuation layouts. Minimum and median 
values are adopted as indices of comparison and are denoted as min(∗) and ,∗  respectively. 
These indices are preferred over maximum or mean values because they are not affected by 
infinite or very large results caused by singularities. 
 

Pure isF  [N] Pure avF  [N] Abs. isF  [N] Abs. avF  [N] Pure zm [Nm] Abs. zm [Nm] 
PPM 

Layout min( )isF

 isF  min( )avF

 avF  min( )isF

 isF  min( )avF

 avF  min( )zm

 zm  min( )zm

 zm  

3-RRR 0.00 17.13 22.33 57.11 17.41 31.22 53.80 79.76 0.00 2.00 2.21 6.87 
3-RPR 0.00 9.57 29.90 53.42 7.88 22.98 38.08 63.23 0.00 1.62 2.10 6.43 
3-PRR 0.00 8.57 17.06 25.06 1.83 13.95 21.59 34.37 0.00 1.90 2.95 3.58 
3-RRR 35.92 46.92 61.40 87.25 42.17 56.29 77.05 114.06 3.73 5.51 5.55 8.98 
3-RPR 33.19 37.22 45.97 70.25 35.34 43.05 54.59 77.43 3.63 5.03 4.47 8.27 
3-PRR 27.48 31.66 40.86 49.18 28.49 34.05 41.20 55.75 4.40 5.07 5.91 7.19 
4-RRR 20.61 34.47 46.30 66.24 22.02 46.14 66.05 92.14 4.06 7.01 6.75 11.06 
4-RPR 0.01 26.81 52.17 65.58 21.69 30.92 53.89 67.76 0.00 7.71 5.19 11.03 
4-PRR 14.14 22.32 30.27 33.29 21.55 27.84 32.66 38.63 2.00 4.56 6.31 7.10 

Table 4. Wrench performance indices of planar parallel manipulators. 
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The results clearly show that the addition of redundancy, whether in-branch or branch 
redundancy, has a dramatic improvement on the wrench capabilities for PPMs when 
compared to non-redundant PPMs. In particular, in-branch redundancy provides greater 
forces; whereas, branch redundancy offers greater moments. 

6. Future research 
A number of possible avenues for future investigation exist. For this work, the orientation of 
the platform was kept constant. Investigating the effects on wrench capabilities for PPMs by 
varying the orientation of the platform would provide a better understanding of the full 
range of wrench capabilities of a given architecture. Another avenue of investigation would 
be determining the effects that modifying the geometric parameters of a PPM architecture 
has on its wrench capabilities. Also, exploring the effects on the wrench capabilities of 
changing the assembly modes for a given architecture could be conducted. Application of 
the proposed indices to spatial PMs would be a further area to explore.  

7. Conclusions 
This work presents a method to understand and quantify wrench capabilities of PPMs. 
Wrench capabilities are determined by projecting the actuator torque capabilities into the 
wrench space. This projection is a linear transformation that leads to a convex set, i.e., a 
wrench polytope. To numerically evaluate wrench polytopes, six wrench performance 
indices are derived. Each index is associated to a particular operational condition of the 
manipulator. These indices are plotted throughout the workspace of the manipulator. As a 
design tool, the wrench workspaces allow for easy visualization of the differences in wrench 
capabilities between different PPM architectures. For an existing manipulator, this visual 
representation can be employed to improve path planning.  
The wrench capability analysis is implemented to three non-redundant layouts: 3-RRR, 3-
RPR, and 3-PRR. In addition, the effects of including in-branch redundancy (3-RRR, 3-RPR, 
and 3-PRR) and branch redundancy (4-RRR, 4-RPR, and 4-PRR) are presented. It is 
concluded that in-branch redundancy yields greater forces; whereas, branch redundancy 
offers greater moments. 
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1. Introduction    
Parallel manipulators (PMs) are closed kinematic chains with one or more loops where only 
some pairs are actuated while the remaining are passive. In particular, they feature a fixed 
link (base) and an output moving link (platform) interconnected by at least two independent 
kinematic chains (legs) to form one loop. The most well known and commonly employed 
PMs (hereafter called UPS-PMs) feature n variable-length legs of type UPS (where U, P and 
S are for universal, spherical and prismatic pairs respectively). Equivalently, a revolute pair 
R could be used instead of the prismatic pair P in order to make the leg length variable (in 
this case the leg would be of type URS). These leg topologies provide the platform with six 
degrees of freedom with respect to the base.  
Although the definition of UPS-PMs requires n ≥ 2, in practice, neglecting overconstrained 
and redundantly-actuated manipulators, performance issues recommend 3 ≤ n ≤ 6. Indeed, 
UPS-PMs with only two UPS legs might exhibit a low stiffness against torques acting along 
the line joining the centers of the two spherical pairs, and their control would require the in-
series placement of at least three actuators/sensors (one of them placed to control/measure 
at least one out of the three degrees of freedom of the spherical pairs) which reduces the 
overall manipulator dynamic and accuracy capabilities. On the other side, the use of more 
than six legs reduces the exploitable manipulator workspace for the increase of leg 
interference.  
Different sub-classes of manipulator architectures can be obtained according to the location 
of the centers of the U and S pairs in the base and in the platform respectively (Innocenti & 
Parenti-Castelli, 1994; Faugere & Lazard, 1995). General UPS-PM architectures feature 
distinct joint centers. Special architectures can be devised by setting some of the joint centers 
to be coincident.  
A schematic of a 6-DOF UPS-PM having six legs (n = 6) and general architecture is shown in 
Fig. 1. In the figure, the U pairs (connecting the legs to the base) and S pairs (connecting the 
legs to the platform) are depicted as grey and white dots respectively. Points Bi and Pi 
represent the centers of the  U and S  pairs of  the i-th leg on  the  base and on the platform 
respectively. The six legs of type UPS are represented by the telescopic rods BiPi    (i = 1, …, 
6). Accordingly, the length of the i-th leg is defined as the distance li = ⎪Pi - Bi⎪. 
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Fig. 1. Parallel manipulator with six legs of type UPS 

Manipulators with less than six DOF can be obtained from UPS-PMs by suitably eliminating 
or locking some of the leg kinematic pairs. For instance, considering a 6-DOF UPS-PM 
having six legs, elimination of four P pairs yields a 2-DOF PM having two legs of type UPS 
and four legs of type US. 
Well-known examples of UPS-PMs are as follows: 1) the 6-DOF UPS-PMs (Gough & 
Whitehall, 1962; Stewart, 1965; Cappel, 1967); 2) the 3-DOF spherical PMs (Innocenti & 
Parenti-Castelli, 1993); 3) the 2-DOF spherical PMs (Vertechy & Parenti-Castelli, 2006); and 
4) the 1-DOF helicoidal PMs (Jacobsen, 1975). Because of their parallel architecture,         
UPS-PMs exhibit large payload-to-weight ratio, high accuracy, high structural rigidity and 
high dynamic capabilities, which make them excel as: a) fast and high precision robots in 
vehicle simulators (Gough & Whitehall, 1962; Stewart, 1965; Cappel, 1967), machine tools 
(Charles, 1995) and positioning systems (Schmidt-Kaler, 1992); b) passive Cartesian input 
devices in joysticks, master-slave teleoperation systems (Daniel et al., 1993) and other 
tracking devices (Geng & Haynes, 1994); c) force/torque sensors and generators in multi-
axis sensors and motors (Gaillet & Reboulet, 1983; Nguyen et al., 1991; Lewis et al., 2002);   
d) mechanical transmissions in motion converters (Jacobsen, 1975); and e) orthopedic 
devices in fixations systems (Taylor & Taylor, 2000; Di Gregorio & Parenti-Castelli, 2002).  
Practical use of UPS-PMs requires solving the manipulator direct position analysis (DPA) 
robustly, quickly and accurately. By definition, the DPA of PMs consists in finding the 
relative pose (position and orientation) of platform and base when the readouts of an 
adequate number of joint-sensors (hereafter also referred to as “input variables”), which 
equip some of the leg kinematic pairs, are given. Usually, this problem involves the solution 
of a system of kinematic constraint equations (SKCE) that are implicit and non-linear. That 
is, in general, the DPA of UPS-PMs is very complicated and admits multiple real solutions, 
each corresponding to a different mode of assembly of the manipulator. The existing 
methods for the solution of the DPA of UPS-PMs fall into three categories: 1) echelon-form 
approaches (Griffis & Duffy, 1989; Innocenti & Parenti-Castelli, 1990; Nanua et al., 1990; 
Merlet, 1992; Innocenti, 2001; Lee & Shim, 2001); 2) iterative approaches (McCallion & 
Truong, 1979; Reboulet, 1988; Innocenti & Parenti-Castelli, 1991; Merlet, 1993a; Parenti-
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Castelli & Di Gregorio, 1995; McAree & Daniel, 1996); and 3) extra-sensor approaches. Both 
echelon-form methods and iterative methods are based on the use of a number of input 
variables (that is the joint-sensor number) which equals the number of manipulator DOFs. 
They differ, however, in the way the SKCE is solved. In particular, in echelon-form 
approaches, the SKCE is possibly reduced to one univariate polynomial equation, from 
which all the possible modes of assembly of the manipulator are determined by means of 
standard root finding techniques. Though of great theoretical significance, echelon-form 
methods are not suited for real-time applications where the fast and unambiguous 
identification of the actual pose of the platform is sought for. In iterative approaches, the 
SKCE is solved monolithically by iterative techniques, mostly based on the Newton-
Raphson method. These approaches require a guess solution and aim at determining the 
actual pose of the platform in real-time. Unfortunately, iterative approaches require both the 
UPS-PM to be sufficiently far away from a singular configuration and a good initial guess of 
the actual pose of the platform, two conditions which cannot always be satisfied and can 
seriously affect the robustness of these approaches. Unlike the first two methods, extra-
sensor approaches use a number of input variables which is greater than the number of 
manipulator DOFs. The extra-sensors are added for at least one of the following reasons:     
1) to render the SKCE an explicit problem, which makes it possible to find closed form 
solutions of the DPA; 2) to render the SKCE a linear problem, which makes it possible to 
find the actual pose of the platform unambiguously; 3) to speed-up the computation of the 
DPA solution; 4) to make the method robust against UPS-PM special configurations (i.e. 
platform poses for which the DPA problem becomes undetermined); and 5) to improve the 
accuracy of the solution by reducing the influence of the errors affecting the joint-sensor 
readouts on the errors affecting the computed actual pose of the platform.  
A proper choice of the number, type and location of the sensors makes it possible to devise 
extra-sensor methods possessing all the abovementioned features. The possibility of 
determining the actual configuration of the UPS-PM (i.e. the actual platform pose) 
unambiguously, robustly, quickly and accurately makes such extra-sensor approaches 
superior to the echelon-form and the iterative ones in practical real-time applications. 
In this chapter, a detailed overview of the extra-sensor approaches, presented in the 
literature, is first provided. Then a novel very robust, fast and accurate general method 
based on extra-sensors is presented which makes it possible to unambiguously find the 
actual pose of the platform of UPS-PMs having general architecture. The method readily 
applies also to the DPA of both UPS-PMs with special geometry and PMs with less than six 
DOF that can be obtained from the 6-DOF UPS-PMs by suitably eliminating or locking some 
of the leg kinematic pairs. Finally, discussions are reported to highlight the advantages of 
the presented method. 

2. Measurement of the input variables for the DPA of UPS-PMs 
The manipulator DPA requires the knowledge of a number of input variables at least equal 
to the number of manipulator DOF. The manipulator variables which are frequently chosen 
as input for the solution of the DPA of UPS-PMs are presented in this section along with the 
possible methods for their measurement. 
Considering UPS-PMs having n legs, possible choice (which practically the most used) of the 
input variables are the followings: 
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- the joint variables of the n existing legs of the manipulator; 
- the distance between points of suitably chosen links.  

 

 

Fig. 2. Leg of type UPS 

In the first case, sensors are located on the leg kinematic pairs. For instance, with reference 
to Fig. 2, the sensors can measure the leg joint variables, i.e. the angles ϕi1 and ϕi2 (i = 1, …, n) 
and the lengths li = ⎪Pi - Bi⎪ of the U and P pairs. Conversely, the spherical pairs are 
normally not instrumented since, unless they are manufactured as three revolute pairs with 
intersecting axes, the installation of rotary sensors may be impractical. Moreover, as a matter 
of fact, because of their own bulk, weight, vulnerability and cabling, sensors should be 
placed as close as possible to the base in order to not decrease manipulator performance, 
ruggedness and reliability.  
 

 

Fig. 3. Parallel manipulator with six legs of type UPS and one string pot 
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Fig. 4. Leg of type UPS instrumented with string pots 
In the second case, additional external sensors are used. The most common way is to use: 

a) cable extension transducers (CET, also known as “string pots”); 
b) passive chains of type UPS with a sensor embedded in the P pair. 

By means of these sensors, the distance between points of the base and the platform can be 
measured (see Fig. 3, points B7 and P7) or also the distance of points of suitably chosen links 
of the UPS legs can be measured, which may provide additional information on the joint leg 
variables. For instance, (see Fig. 4) the measure of ⎪Ci - Di⎪ and ⎪Ei - Fi⎪, with Di and Fi  
points of the platform, and Ci and Ei  points of the second movable link of the UPS leg, 
indirectly provides the values of the joint angles ϕi2 and ϕi1. It is worth noting, however, that 
the direct measuring of angles ϕi1 and ϕi2 by rotary sensors (placed locally on the revolute 
pairs) is normally preferable since it would lead to a unique position of point Pi, while the 
use of the lengths of the segments CiDi and EiFi would provide two positions for Pi (two 
symmetric positions with respect to the plane defined by points Bi, Di and Fi). 
The choice of the UPS joint variables is, in general, the most suitable. Indeed, the addition of 
CETs or additional UPS measurement legs can both reduce the exploitable manipulator 
workspace (because of increased possibility of leg interference) and slow-down the 
manipulator dynamic performance (due to the inertia of the additional UPS legs and to the 
limited mechanical response of CETs). Moreover, CET sensor accuracy is poor for many 
practical applications and the implementation of accurate extra UPS measurement legs is 
rather expensive. 
An overview of extra-sensor based methods that have been proposed in the literature for the 
DPA of 6-DOF UPS-PMs having general architecture is presented in the following section. 
Of course, all these methods readily apply to the DPA of both UPS-PMs with special 
geometry and PMs with less than six DOF that can be obtained from the 6-DOF UPS-PMs by 
suitably eliminating or locking some of the leg kinematic pairs. 

3. Literature overview of extra-sensor based methods for the DPA of UPS-
PMs 
This section provides an overview of extra-sensor based methods that are available for the 
solution of the DPA of 6-DOF UPS-PMs. The methods are sorted in chronological order 
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(according to the publication date of the author’s most relevant work). For each method, the 
employed sensor layouts are first described, and the major features and drawbacks of the 
resulting DPA methods are then highlighted. To describe the sensor layout of each leg of 
type UPS, the sequence RRP is used to indicate the cascade of joints which are serially 
connected from base to platform (referring to Fig. 2, RR indicates the two revolute pairs with 
intersecting axes the U pair is featured by; the spherical pair S is ignored since it is not 
supposed to be instrumented) and the underline is used to highlight the joint whose 
position is measured. For instance, the leg sensor layout RRP indicates that 1 rotary position 
sensor and 1 linear position sensor are installed on the leg. The sensor layout of a given 
manipulator is described by a list (set) of sensor layouts of the legs belonging to the 
manipulator. That is, the set {2-RRP, RRP, 4-RRP} indicates that 8 sensors are mounted on 
the manipulator; in particular, it features 2 legs each having 1 rotary position sensor, 1 leg 
having 1 rotary position sensor and 1 linear position sensor, and 4 legs each having 1 linear 
position sensor. 
The first DPA solution of UPS-PMs via extra-sensors was firstly proposed in 1991, when, 
following the studies on the pose and twist estimation from three collinear measured points 
(Fenton & Shi, 1989), Shi and Fenton (Shi & Fenton, 1991) employed the set {3-RRP} to 
devise a method that reduces the DPA of UPS-PMs having general base and platform to an 
explicit problem which can be readily solved in real-time. Irrespective of the manipulator 
configuration, the method always makes it possible to find the actual platform pose. 
However, the method does not account for the measurement errors, which in practice 
always affect the sensor readouts. As a matter of fact, the proposed method is rather 
inaccurate when measurement errors are present. 
Several sensor layouts are studied in (Stoughton & Arai, 1991) in order to devise fast and 
accurate methods for the solution of the DPA of the UPS-PM with general base and 
platform. Note that results similar to those presented by Stoughton and Arai have also been 
reported lately in (Hesselbach et al., 2005). In particular: 1) using the set {3-RRP} the DPA is 
reduced to an explicit problem readily yielding the actual manipulator configuration; 2) 
using both the set {2-RRP, RRP} and the set {2-RRP, RRP} the DPA is reduced to the solution 
of a system of 2 uni-variate quadratic equations in the same unknown usually yielding the 
actual manipulator configuration; 3) using both the set {2-RRP, RRP} and the set {2-RRP, 
RRP} the DPA is reduced to the solution of a system of 2 quadratic and 1 linear 3-variate 
equations in the same 3 unknowns usually yielding 2 possible manipulator configurations 
from  which  the  actual platform  pose  cannot be  detected; 4) using  one of  the sets {RRP, 
2-RRP}, {RRP, 2-RRP} or {RRP, RRP, RRP}, the DPA is reduced to the solution of 2 uni-
variate quadratic equations in 2 different unknowns usually yielding four possible 
manipulator configurations (although it is not stated in the paper, the actual manipulator 
configuration may be detected among those 4 possibilities by checking the satisfaction of a 
further constraint equation); and 5) using the set {RRP, RRP, RRP} the DPA is reduced to the 
sequential solution of a system of 2 quadratic and 1 linear 3-variate equations in the same 3 
unknowns, and of a uni-variate quadratic equation in a different unknown usually yielding 
4 possible manipulator configurations among which the actual platform pose cannot be 
detected. All the aforementioned solutions can be computed in real-time. Only the method 
based on the set {3-RRP} guarantees that the actual manipulator configuration can always be 
calculated (manipulator configurations may exist for which the methods based on the other 
sensor layouts cannot find a unique DPA solution). The paper also addresses accuracy 
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issues. In particular, the ratios between the magnitudes of the errors affecting the computed 
manipulator configuration and the measurement errors affecting the joint-sensor readouts 
are determined for all the abovementioned sensor layouts. This makes it possible to select 
the required sensor precision which provides the desired accuracy of the calculated platform 
pose. Moreover, it is shown that the solution of the DPA based on the set {3-RRP} is less 
sensitive to the measurement errors affecting the joint-sensors than the solution which can 
readily be computed if the measurement of the 6 joints parameters of one single leg are 
available (in this latter case the leg sensor layout would be RRP plus 3 additional rotary 
position sensors measuring the rotations allowed by the S pair of the same leg).  
Two sensor layouts are proposed in (Cheok et al, 1992) to devise methods that make it 
possible to find the actual solution of the DPA of the UPS-PM with general base and 
platform in real-time. In particular: 1) using the set {3-RRP} the DPA is reduced to an explicit 
problem readily yielding the actual manipulator configuration; and 2) using the set {6-RRP, 
RRP} the DPA is reduced to the solution of a system of 6 linear 6-variate equations in the 
same 6 unknowns usually yielding the actual manipulator configuration. Only the method 
based on the set {3-RRP} guarantees that the actual manipulator configuration can always be 
calculated. Indeed, special manipulator configurations may exist for which the 6 linear 
equations to be solved in method (2) are not linearly independent. The paper does not 
address accuracy issues. As a matter of fact, the proposed method is rather inaccurate when 
the joint-sensors are affected by measurement errors. 
Two sensor layouts are proposed in (Merlet, 1993b) to devise methods that make it possible 
to find the solution  of the  DPA  of  UPS-PMs  in real-time. In particular: 1) the set {2-RRP, 
2-RRP} is used to reduce the DPA of the UPS-PM with general base and platform to the 
solution of a system of 2 uni-variate quadratic equations in the same unknown usually 
yielding the actual manipulator configuration; 2) the set {RRP, RRP, 2-RRP} is used to 
reduce the DPA of the UPS-PM with general base and platform to the sequential solution of 
a system of 2 uni-variate quadratic equations in the same unknown and of a uni-variate 
quadratic equation in a further different unknown usually yielding 2 possible manipulator 
configurations from which the actual platform pose cannot be detected; and 3) the set {RRP, 
6-RRP} is used to reduce the DPA of the UPS-PM with planar base and platform to the 
solution of a system of 9 9-variate linear equations in the same 9 unknowns usually yielding 
the actual manipulator configuration. Note that the proposed methods do not guarantee that 
the actual manipulator configuration can always be calculated. Indeed, special manipulator 
configurations may exist for which either the two pairs of solutions of the two quadratic 
equations to be solved in method (1) are identical or the 9 linear equations to be solved in 
method (3) are not linearly independent. Accuracy issues related to the {2-RRP, 4-RRP} 
sensor layout are addressed in a later paper (Tancredi and Merlet, 1994) in which the pose 
dependent ratios between the magnitudes of the errors affecting the computed manipulator 
configuration and the errors affecting the joint-sensor readouts are evaluated and mapped. 
Two sensor layouts are proposed in (Nair & Maddocks, 1994) to devise methods that make 
it possible to reduce the solution of the DPA of UPS-PMs to an explicit problem which can 
be solved in real-time. In particular: 1) the set {16-RRP} is used to reduce the DPA of 
manipulators with general base and platform to the solution of a system of 16 16-variate 
linear equations in the same 16 unknowns usually yielding the actual manipulator 
configuration; and 2) the set {9-RRP} is used to reduce the DPA of manipulators with planar 
base/platform to the solution of a system of 9 9-variate linear equations in the same 9 



 Parallel Manipulators, Towards New Applications 

 

140 

unknowns usually yielding the actual manipulator configuration. None of the proposed 
methods guarantee that the actual manipulator configuration can always be calculated. 
Indeed, special manipulator configurations may exist for which either the 16 linear 
equations to be solved in method (1) or the 9 linear equations to be solved in method (2) are 
not linearly independent. The paper does not address accuracy issues. As a matter of fact, 
the proposed method is rather inaccurate when the joint-sensors are affected by 
measurement errors. 
A method is proposed in (Jin, 1994), which uses the set {4-RRP, 2-RRP}, to reduce the DPA of 
the UPS-PM with planar base and platform to the sequential solution of a system of 2 linear 
2-variate equations in the same 2 unknowns and of a system of 5 5-variate linear equations 
in a further 5 unknowns. The problem can be solved in real-time and usually admits one 
solution corresponding to the actual manipulator configuration. The proposed method does 
not guarantee that the actual manipulator configuration can always be calculated. Indeed, 
special manipulator configurations may exist for which either the 2 equations belonging to 
the first system to be solved or the 5 equations belonging to the second system to be solved 
are not linearly independent. The paper does not address accuracy issues. As a matter of 
fact, the proposed method is rather inaccurate when the joint-sensors are affected by 
measurement errors. 
A study for the determination of the maximum number of possible DPA solutions for UPS-
PMs having different sensor layouts was accomplished in (Tancredi et al., 1995). It turned 
out that: 1) the DPA of UPS-PMs with general base and platform admits up to 35 possible 
solutions when the set {5-RRP, RRP} is used; 2) the DPA of UPS-PMs with general base and 
platform admits up to 8 possible solutions when the set {3-RRP, 3-RRP} is used; 3) the DPA 
of UPS-PMs with planar base and platform admits up to 6 possible solutions when the set 
{RRP, 5-RRP} is used; 4) the DPA of UPS-PMs with planar base and platform admits up to 4 
possible solutions when the set {6-RRP} is used; and 5) the DPA of UPS-PMs with general 
base and platform admits up to 8 possible solutions (however, only two solutions are more 
likely) when the set {5-RRP, RRP} is used.  
A method is proposed in (Etemadi-Zanganeh & Angeles, 1995), which uses the set {5-RRP, 
RRP}, to reduce the DPA of the UPS-PM with general base and platform to the solution of 5 
eigenproblems of 6 × 6 matrices usually admitting a unique solution which can be computed 
in real-time. Note that the proposed method does not guarantee that the actual manipulator 
configuration can always be calculated. Indeed, special manipulator configurations may 
exist for which the condition number of the aforementioned 6 × 6 matrices is close to infinity 
(i.e. it is very large). The paper addresses accuracy issues too. Using the redundant 
information provided by the extra-sensors, the proposed method is able to reduce the 
influence of the errors affecting joint-sensor readouts on the errors affecting the computed 
manipulator configuration. 
A method is proposed in (Han et al., 1996), which uses the set {5-RRP, RRP}, to reduce the 
DPA of the UPS-PM with planar base and platform to the solution of a system of 5 linear 6-
variate equations and one quadratic 3-variate equation in the same unknowns. The problem 
can be solved in real-time and admits 2 possible solutions, among which the actual 
manipulator configuration can usually be determined by (a-posteriori) checking the 
satisfaction of a further two quadratic constraint equations. Note that the proposed method 
does not guarantee that the actual manipulator configuration can always be calculated. 
Indeed, special manipulator configurations may exist for which the two possible solutions of 
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the system of equations both satisfy the additional constraint equations. The paper does not 
address accuracy issues. As a matter of fact, the proposed method is rather inaccurate when 
the joint-sensors are affected by measurement errors. 
A method is proposed in (Jin & Hai-Rong, 1996), which uses the set {5-RRP, RRP}, to reduce 
the DPA of the UPS-PM with planar base and platform to the sequential solution of two 
systems of equations, the first one of 20 linear 20-variate equations in the same 20 unknowns 
and the second one of 3 3-variate linear equations in another 3 different unknowns, and then 
to the solution of a quadratic equation in a further unknown. The problem can be solved in 
real-time and usually admits two solutions (that are symmetric with respect to the planar 
manipulator base) one of which corresponds to the actual manipulator configuration. Note 
that the proposed method does not guarantee that the two aforementioned solutions (and, 
thus, the actual manipulator configuration) can always be calculated. Indeed, special 
manipulator configurations may exist for which the 20 equations belonging to the first 
system to be solved are not linearly independent. The paper does not address accuracy 
issues. As a matter of fact, the proposed method is rather inaccurate when the joint-sensors 
are affected by measurement errors. 
A method based on either the set {7-RRP} or the set {5-RRP, RRP} is proposed in (Innocenti, 
1998), which reduces the DPA of the UPS-PM with general base and platform to the solution 
of a system of 146 146-variate linear equations in the same 146 unknowns usually yielding 
the actual manipulator configuration. Note that the proposed method does not guarantee 
that the actual manipulator configuration can always be calculated. Indeed, special 
manipulator configurations may exist for which the 146 equations to be solved are not 
linearly independent. Due to the large number of equations, the solution of the system of 
equations requires a rather large computational burden. However, since the system of 146 
equations has a sparse coefficient matrix, rather efficient sparse solvers may be used to find 
the solution in real-time. The paper does not address accuracy issues. As a matter of fact, the 
proposed method is rather inaccurate when the joint-sensors are affected by measurement 
errors. 
Two sensor layouts are used in (Parenti Castelli & Di Gregorio, 1998) to devise methods 
which make it possible to reduce the DPA of UPS-PMs to an explicit problem that can be 
solved in real-time. In particular: 1) the set {4-RRP, RRP} is used to reduce the DPA of 
manipulators with general base and platform to the solution of a system of 15 15-variate 
linear equations in the same 15 unknowns usually yielding the actual manipulator 
configuration; and 2) the set {5-RRP, RRP} is used to reduce the DPA of manipulators with 
general base and platform to the solution of a system of two 6-degree polynomial uni-
variate equations in the same unknown usually yielding the actual manipulator 
configuration. Note that the proposed methods do not guarantee that the actual manipulator 
configuration can always be calculated. Indeed, special manipulator configurations may 
exist for which either the 15 equations to be solved in method (1) are not linearly 
independent or the two 6-degree polynomials involved in method (2) have more than one 
common root. The paper does not address accuracy issues. As a matter of fact, the proposed 
method is rather inaccurate when the joint-sensors are affected by measurement errors. 
A method based on the set {5-RRP, RRP} is used in (Parenti Castelli & Di Gregorio, 1999) to 
reduce the DPA of UPS-PMs with general base and platform to the solution of two 48-
degree uni-variate polynomial equations in the same unknown usually having a unique 
common root, corresponding to the actual manipulator configuration. Note that the 
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proposed method does not guarantee that the actual manipulator configuration can always 
be calculated. Indeed, special manipulator configurations may exist for which the two 48-
degree polynomials have more than one common root. The solution of the reduced problem 
requires a large computational burden and, thus, cannot be computed in real-time. The 
paper does not address accuracy issues. As a matter of fact, the proposed method is rather 
inaccurate when the joint-sensors are affected by measurement errors. 
A method based on the set {9-RRP} is used in (Bonev & Ryu, 1999) to reduce the DPA of 
UPS-PMs with general base and planar platform to the solution of two sets of three 
quadratic 3-variate equations in the same 3 unknowns usually having a unique common 
solution, corresponding to the actual manipulator configuration. The proposed method does 
not guarantee that the actual manipulator configuration can always be calculated. Indeed, 
special manipulator configurations may exist for which the two sets of quadratic equations 
have more than one common solution. The calculations involved in the determination of 
manipulator configuration require a large computational burden and, thus, cannot be 
computed in real time. The paper addresses accuracy issues. In particular it is shown that 
the errors in the calculated platform pose are of the same magnitude of the measurement 
errors affecting the sensor readouts.  
A method based on the set {4-RRP, RRP} is proposed in (Parenti Castelli & Di Gregorio, 
2000) to reduce the DPA of manipulators with general base and platform to the sequential 
solution of a 6-degree uni-variate polynomial equation and of a system of two linear            
bi-variate equations in two further unknowns. The problem can be solved in real-time and 
admits up to six possible solutions, among which the actual manipulator configuration can 
usually be determined by (a-posteriori) checking the satisfaction of a further additional 
quadratic constraint equation. Note that the proposed method does not guarantee that the 
actual manipulator configuration can always be calculated. Indeed, special manipulator 
configurations may exist for which more than one solution (among the abovementioned six 
possible solutions) satisfy the additional quadratic constraint equation. The paper does not 
address accuracy issues. As a matter of fact, the proposed method is rather inaccurate when 
the joint-sensors are affected by measurement errors. 
As a result of several investigations (Angeles, 1990; Baron & Angeles, 1994; Baron & 
Angeles, 1995) a very general method based on at least nine measurements, obtained from 
the sensors placed on n legs according to the following sensor layouts RRP, RRP and RRP, is 
proposed in (Baron & Angeles, 2000a; Baron & Angeles, 2000b) which reduces the DPA of 
UPS-PMs with general base and platform to the evaluation of the orthogonal polar factor of 
a 3 × 3 matrix whose components are obtained from the least-square-solution of a system of 
3n 9-variate linear equations in the same nine unknowns. The reduced problem can be 
solved in real-time and usually admits a unique solution, corresponding to the actual 
manipulator configuration. However, in general, the uniqueness of the solution is not 
guaranteed. Indeed, special manipulator configurations may exist for which 9 linearly 
independent equations cannot be found among the 3n equations cited above. The method 
accounts for the measurement errors, which always affect the joint-sensor readouts. In 
particular, the redundant information provided by the extra-sensors is also used to reduce 
the influence of the measurement errors on the errors affecting the computed platform pose 
(that is, the computed manipulator configuration is the solution which most closely satisfies 
all the aforementioned 3n equations). Among all the possible sets of leg sensor layouts, the 
sets {n-RRP} (for n ≥ 3) are shown to be very effective since they guarantee that both a 
unique (the actual) DPA solution can always be found and the matrix from which to extract 
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the orthogonal polar factor is simply obtained by the matrix multiplication of two matrices 
having dimensions 3 × n and n × 3. In practice, the set {3-RRP} is very interesting since it 
provides a very fast and accurate unique solution of the DPA by using the minimum 
number of sensors (among the sensor layouts this method is based on). As compared to 
other methods (Shi & Fenton, 1991; Stoughton & Arai, 1991; Cheok et al, 1992) using the set 
{3-RRP}, the method proposed by Baron and Angeles is the most accurate and only slightly 
more expensive in terms of computational cost. 
A method based on the set {9-RRP} is proposed in (Bonev et al., 2001) to reduce the DPA of 
the UPS-PM with planar base and platform to the solution of a system of six linear 6-variate 
equations in the same 6 unknowns usually admitting a unique solution, corresponding to 
the actual manipulator cofiguration, which can be computed in real time. Note that the 
proposed method does not guarantee that the actual manipulator configuration can always 
be found. Indeed, special manipulator configurations may exist for which the 6 equations to 
be solved are not linearly independent. The paper addresses accuracy issues too. In 
particular a procedure is proposed for the determination of the optimal extra-sensor 
location, which makes it possible to minimize (throughout the desired manipulator 
workspace) the ratio between the magnitudes of the errors affecting the computed 
manipulator configuration and of the errors affecting the joint-sensor readouts. 
A method based on the set {6-RRP, RRP} is proposed in (Chiu & Perng, 2001) to reduce the 
DPA of the UPS-PM with general base and platform to the solution of two quadratic uni-
variate equations in two different unknowns. The problem can be solved in real-time and 
admits four possible solutions, among which the actual manipulator configuration can 
usually be determined by (a-posteriori) checking the satisfaction of a further three quadratic 
constraint equations. The proposed method does not guarantee that the actual manipulator 
configuration can always be calculated. Indeed, special manipulator configurations may 
exist for which more than one solution (among the four possible solutions cited above) 
satisfies the three additional quadratic constraint equations. The paper addresses accuracy 
issues too. In particular a procedure is proposed for the determination of the optimal extra-
sensor location, which makes it possible to minimize (throughout the desired manipulator 
workspace) the ratio between the magnitudes of the errors affecting the computed 
manipulator configuration and of the errors affecting the joint-sensor readouts. 
Focusing on the popular measurement set {3-RRP}, which is the only one guaranteeing that 
a unique DPA solution can always be found irrespective of the manipulator configuration, 
and accounting for the measurement errors, which always affect the sensor readouts, a 
method is proposed in (Vertechy & Parenti Caselli, 2007; Vertechy et al., 2002) which, 
following an approach similar to that of Baron and Angeles (Baron & Angeles, 2000a; Baron 
& Angeles, 2000b), reduces the DPA of the UPS-PM with general base and platform to the 
solution of one simple trigonometric equation in a single unknown. The method always 
provides the actual platform pose in real-time, it is insensitive to singular configurations, it 
has the same accuracy as the method by Baron and Angeles (Baron & Angeles, 2000a; Baron 
& Angeles, 2000b) but it requires a reduced computational burden (it is three times more 
efficient). 

4. A robust, fast and accurate novel method for the DPA of UPS-PMs by 
using extra-sensors 
In this section, a novel extra-sensor-based method for the solution of the DPA of 6-DOF 
UPS-PMs having general geometry is presented (the method readily applies also to the DPA 
of both UPS-PMs with special geometry and PMs with less than six DOF). The method is 
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based on the sensor layout {n-RRP} (n ≥ 3) and is: robust since it always provide the actual 
platform pose; fast since the calculation of the actual platform pose can be performed in real-
time; and accurate since the redundant information provided by the extra-sensors is used to 
reduce the influence of the measurement errors on the errors affecting the computed 
platform pose. The method is based on the DPA algorithms developed in (Baron & Angeles, 
2000a; Baron & Angeles, 2000b) but it improves both the accuracy and the computational 
efficiency. 
In the following, in sub-section 4.1 the fundamentals of the method are introduced. In sub-
section 4.2 a general method is presented which makes it possible to solve the DPA of UPS-
PMs having general architecture, general sensor layout and noisy sensors, but which cannot 
guarantee the uniqueness of the DPA solution. In section 4.3 the novel method is presented. 
Finally, in sub-section 4.4 results are reported which show that the novel method is more 
accurate and computationally more efficient than other methods available in the literature. 

4.1 Fundamentals of the method: general sensor layout without measurement errors 
For a UPS-PM two reference frames Sb, centered at Ob, and Sp, centered at Op, are attached to 
the manipulator base and platform respectively. With reference to Fig. 1, the platform pose 
is described by the vector c = (Op – Ob), which gives the origin of Sp with respect to Sb, and 
by the proper orthogonal matrix R (i.e. det(R) = +1, RTR = 1 where 1 is the 3 × 3 identity 
matrix) which describes the orientation of Sp with respect to Sb. In some applications, R is 
defined equivalently as R = [r1 r2 r3]T, where the ri’s (i = 1,…, 3) are the 3 × 1 orthonormal 
vectors (i.e. ri ⋅ rj = 0 if i ≠ j and ri ⋅ rj = 1 if i = j) indicating the components of the unit vectors 
of the frame Sb in the frame Sp. With reference to Fig. 2, consider the leg variables ϕi1, ϕi2 and 
li which define the position of points Pi with respect to Sb (without losing in generality, in the 
following it is assumed that the leg geometry is such that the leg unit vector vi,  
vi = BiPi/|BiPi|, is orthogonal to the axis ui of the revolute pair Ri2 and that the unit vector ui 
is orthogonal to the axis ii of the revolute pair Ri1; thus, ϕi1 indicates the angle between axes 
ui and ji, ϕi2 indicates the angle between the vector PiBi and the axis ii, and li indicates the 
distance between points Pi and Bi). By definition, the DPA of 6-DOF UPS-PMs having n legs 
consists in finding c and R once the magnitude of at least 6 leg variables (among the 3n 
possible variables ϕi1, ϕi1 and li, for i = 1, …, n) are known by measurement. In practice, c 
and R are found as the solution of a system of kinematic constraint equations (SKCE) of the 
type 

 ( )ϕ ϕ1 2, ; , ,i i i il =Rf c 0 , i = 1, …, n.  (1) 

For the class of manipulators under study, the kinematic constraint equations (1) can be 
derived by considering the analytical expressions of vectors BiPi (i = 1, …, n). Indeed, by 
referring to Fig. 1, the position vector qi = (Pi − Bi)b expressed in Sb can be written as 

 = + −i i iRq c p b ,  (2) 

where pi = (Pi − C)p and bi = (Bi − O)b are known (at the outset) position vectors expressed in 
Sp and Sb respectively. Besides, with reference to Fig. 2, the position vector qi can also be 
written as 

 qi i i= l v ,  (3.1) 
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 ϕ ϕ+ ×2 2cos sini i i i i i=v i u i  , (3.2) 

 ϕ ϕcos sini i i1 i i1=u j k−  , (3.3) 

where, of course, in Eqs. (3) vectors ii, ji, ki, ui and vi are assumed to be expressed in Sb. 
Starting from Eqs. (2) and (3), different sets of rather simple linear kinematic constraint 
equations (KCE) can be derived for each of the sensor layouts RRP, RRP and RRP. Indeed, if 
the i-th leg is equipped with one sensor according to the layout RRP, then the angle ϕi1 (and 
the vector ui) are fully known. Therefore, from equations (2), (3.1) and (3.2) the following 
KCE can be written: 

 ( )+ − =T
i i iiu u Rc p b 0  , (4) 

which indicates that the distance of the platform point Pi from the plane passing through Bi 
and having the measured vector ui as normal (i.e. the plane defined by ii and vi) is zero. 
Note that Eq. (4) consists of three equations among which only one is independent of the 
others. If the leg is equipped with two sensors according to the layout RRP, then the angles 
ϕi1 and ϕi2 (and the vector vi) are fully known. Therefore, from equations (2) and (3.1) the 
following KCE can be written: 

 ( )( )− + − =T
i i i i1 v v Rc p b 0 ,  (5) 

which indicates that the distance of the platform point Pi from the line passing through Bi 
and directed along the measured vector vi is zero. Note that Eq. (5) consists of three 
equations among which only two are independent of the others. If the leg is equipped with 
three sensors according to the layout RRP, then the angles ϕi1 and ϕi2, and the length li (and 
the vector qi) are fully known. Therefore, from equations (2) and (3.1) the following KCE can 
be written: 

 ( )+ − − =i i i ilR vc p b 0 , (6) 

which indicates that the distance of the platform point Pi from the corresponding measured 
point lying on the leg is zero. Note that Eq. (6) consists of three independent equations. 
Equations (4)-(6) are of the type described by Eq. (1). Considering all the instrumented legs 
of the manipulator and by resorting to a unified formulation, the SKCE of Eq. (1) can be 
written as 

 ( ) δ+ − − =i i i i iW R vc p b 0 , i =1, …, n  (7) 

where Wi = uiuiT and δi = 0, Wi = 1 - viviT and δi = 0, or Wi = 1 and δi = li if the i-th leg is 
instrumented according to the sensor layout RRP, RRP or RRP respectively. The SKCE of  
Eq. (7) consists of 3n equations. If the manipulator is equipped with at least nine sensors, 
then nine linearly independent equations can usually be extracted from Eq. (7) to find the 
actual manipulator configuration. Indeed, such nine equations can be used to determine the 
three components of c and six of the nine components of R (for instance the components of 
the orthonormal vectors r1 and r2); the remaining three components of R (the components of 
the orthonormal vector r3) can be determined afterwards by using a further three linear 
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equations coming from the proper orthogonality conditions (the three equations r1 ⋅ r3 = 0,   
r2 ⋅ r3 = 0 and det(R) = +1). Among all the possible sensor layouts, the sets {n-RRP} (n ≥ 3) 
guarantee that a unique DPA solution can always be found. For other sensor layouts, 
manipulator configurations may exist for which the set of measurement data is singular and, 
thus, nine linearly independent equations cannot be extracted from Eq. (7). 

4.2 The general method: general sensor layout with measurement errors   
The equalities described by Eq. (7) hold in ideal situations only. Indeed, whenever finite 
precision arithmetic is used to perform the required calculation and whenever joint-sensor 
readouts are affected by measurement errors, the following relations 

 ( ) δ+ − − =i i i i i iW R vc p b e ,   i =1, …, n,  (8) 

hold instead of Eqs. (7), where the ei’s are error vectors whose magnitude should be as small 
as possible. In such real situations, the DPA can be recast to the solution of the following 
constrained least-squares (CLS) problem 

( )[ ]2
1

,
min

n

i i i i i
i

δ
=

+ − −∑R
W R v
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c p b , 
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By observing the quadratic nature of the function to be minimized, the solution of Eq. (9) is 
reduced to first solving the following CLS problem in R only 
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and then to computing c as  
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and depend on the given manipulator geometry and on the measured joint variables. In 
general, the closed-form solution of the CLS problem described by Eq. (10.1) is difficult to 
compute. In practice, an acceptable minimizer R of Eq. (10.1) can be obtained by evaluating 
the orthogonal polar factor (OPF) of the solution of the corresponding unconstrained least-
square (ULS) problem, which is given in the following 

 − −

⎡ ⎤
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where PW is a 3n × 9 matrix, Pi (i =1, …, n) is a 3 × 9 matrix, and bW and vW are 3n × 1 vectors. 
Hence, an acceptable minimizer of Eq. (10.1) is 

 ( )ˆOPF=R R ,  (12.1) 

 [ ]ˆ ˆ ˆ ˆ1 2 3=R r r r T ,  (12.2) 
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where the vectors 1̂r , 2̂r  and ˆ3r  are estimates of the orthonormal vectors r1, r2 and r3. 
Regarding the meaning of the orthogonal polar factor, note that given a 3 × 3 matrix A 
whose polar decomposition is A = QM, where Q is an orthogonal 3 × 3 matrix and M is a 
symmetric and positive definite 3 × 3 matrix, then OPF(A) = Q. Providing that matrix T WWP P  
is well conditioned (i.e. if rank(PW) = 9), then Eqs. (12) admit a unique solution 
corresponding to the actual orientation of the manipulator platform. 

4.2.1 Uniqueness of the solution and computational issues 
According to Eqs. (12), the actual platform orientation can be found if rank(PW) = 9. In order 
for PW to have full rank, a minimum of nine leg variables need to be measured. However, 
this may not be sufficient. Indeed, due to matrices Wi and Pi (i = 1, …, 6), matrix PW is 
dependent on the given manipulator geometry and on the configuration (which is known by 
measurements). As a matter of fact, special manipulator configurations may exist for which 
rank(PW) < 9. In practice, for given manipulator geometry and for selected sensor layout, a-
priori study of the rank of PW is required in order to prevent the method to fail. In cases 
where the drop of rank (which may be caused not only by special configurations and a 
special manipulator geometry, but also by the availability of less than nine joint-sensor 
measurements) is not too drastic, a number of remedies that rely on the mutual dependency 
of the components of R exist, which make it possible to find the actual manipulator 
orientation. A first trick (trick 1) consists in circumventing the rank deficiency by solving 
Eqs. (11) for a reduced number of unknowns only (whose number cannot be greater than the 
rank of PW) and by calculating the remaining ones via the proper orthogonality conditions. 
As an example, note that the solution of Eqs. (11) for the components of 1̂r  and 2̂r  only, and 
the a-posteriori evaluation of the components of ˆ3r  via the three linear equations ˆ ˆ1 3 0⋅ =r r , 
ˆ ˆ2 3 0⋅ =r r  and ˆdet( )R = +1, requires rank(PW) ≥ 6 only. A second trick (trick 2) consists in 
restoring the rank of PW by considering, in addition to the points Pi (i = 1, …, n) of the 
instrumented legs, additional virtual points Pk (k > n) depending on the Pi’s themselves such 
that pk = pi × pj and (b′k + v′k) = (b′i + v′i) × (b′j + v′j), (i ≠ j; for i,j = 1, …, n). As an example 
note that whenever the third components of the vectors pi’s are zero for all points Pi (i = 1, 
…, n), then rank(PW) ≤ 6. In this case, the rank of PW can be restored to 9 by adding an 
appropriate number of virtual points as defined above. A third last trick (trick 3) consists in 
circumventing the rank drop of PW by solving the rank deficient least-squares problem 
given by Eqs. (11) via a method based on the singular value decomposition (SVD) of PW 
(Golub & Van Loan, 1983). Among the three remedies, trick (3) is the most general (it does 
not require a-priori knowledge of the structure of PW), rather accurate, but it is also the most 
computationally intensive; trick (2) is quite general (it requires some a-priori knowledge of 
the structure of PW) and quite computationally efficient, but it is the most inaccurate; trick 
(1) is the less general (it requires a-priori knowledge of the full structure of PW), it is quite 
accurate and quite computationally efficient. 

4.3 A novel method for the manipulator actual configuration determination 
As described in sub-section 4.2.1, the effectiveness of the general method relies upon the 
good conditioning of PW. A very practical sensor layout which both guarantees that the rank 
of PW is independent of manipulator configuration and greatly simplifies the solution of the 
DPA is the set {n-RRP} (n ≥ 3). With this sensor layout, the DPA problem described by     
Eqs. (10) is reduced to 
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Fmin − −
R

RP B V , 

subject to RTR = 1 and det(R) = +1, 
(13.1) 

and 

 = + − Rc b v p ,  (13.2) 

where p, b and v are the following 3 × 1 mean vectors 
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and P, B and V are the following 3 × n matrices 

 [ ]...1 n′ ′=P p p ,  (13.6) 

 [ ]...1 n′ ′=B b b ,  (13.7) 

 [ ]...1 n′ ′=V v v , (13.8) 

which are formed, respectively, by the 3 × 1 vectors p′i = (pi – p), b′i = (bi – b) and                   
v′i = (vi – v). It is worth highlighting that the quantities p, b, P and B depend only on the 
manipulator geometry, while v and V depend also on the manipulator configuration. As 
usual, the notation ║A║F appearing in Eq. (13.1) is used to indicate the Frobenius norm of 
matrix A. Equations (13) show that if the center Op of the mobile frame Sp is chosen as the 
centroid of points Pi (i = 1, …, n), i.e. p = 0, then the orientation and the position problems 
are decoupled, i.e. c = (b + v).  
Following the procedure based on the ULS estimate which was described in section 4.2, an 
acceptable minimizer R of the CLS problem described by Eq. (13.1) is 

 ( )ˆOPF=R R ,  (14.1) 

    ( ) ( )ˆ 1T T −
= +R B V P PP .                (14.2) 

 

However, for the set {n-RRP} (n ≥ 3), the optimal solution of Eq. (13.1) can be found in 
closed-form. Indeed, the CLS problem described in Eq. (13.1) is well known in computer 
vision (Umeyama, 1991) and admits the following solution 
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 ( )( )= ⎡ ⎤⎣ ⎦diag 1,1,det TR U US S ,  (15.1) 

where U and V are the 3 × 3 matrices coming from the SVD of the cross-covariance matrix 

 ( ) T= +C B V P .  (15.2) 

That is, C = UDST (UUT = SST = 1 and D = diag(d1, d2, d3), d1 ≥ d2 ≥ d3 ≥ 0). The unique 
solution given by Eq. (15) does not require the full rank of C (Umeyama, 1991). As a matter 
of fact, the actual platform orientation can be computed whenever rank (C) ≥ 2. 
The solution given in Eq. (15) is different from that proposed in (Baron and Angeles, 2000) 

 ( )OPF=R C ,   (16) 

which is the solution of the orthogonal Procrustes problem (Golub & Van Loan, 1983) 
obtained from the CLS problem of Eq. (13.1) by relaxing the constraint det(R) = +1. 

4.4 Comparison of different DPA methods in terms of accuracy and computational 
efficiency 
Among the different solution methods represented by equations (14), (15) and (16), only 
Eqs. (15) always provides the exact minimum of the CLS problem given by Eq. (13). Thus, 
only the solution given by Eqs. (15) always corresponds to the actual platform orientation 
and is the most accurate. Indeed, the solutions given by Eqs. (14) and Eq. (16) do not 
guarantee the proper orthogonality (det(R) = +1) of matrix R. This is rather risky since     
Eqs. (14) and Eq. (16) may fail to give the correct rotation matrix (corresponding to the 
actual manipulator configuration) and may give a reflection instead when the sensor 
readouts are affected by measurement errors (this drawback is more severe the larger the 
measurement errors are). Between the solutions given by Eqs. (14) and Eq. (16), the former is 
the least accurate. Indeed, Eqs. (14) do not even minimize Eq. (13.1) (Eqs. (14) can be a viable 
good estimate of the solution in cases where measurement errors are rather small only). 
Moreover, due to the matrix inversion operation, note that Eqs. (14.2) requires matrix P to 
have full rank. This is not the case whenever points Pi’s (i = 1, …, n) are coplanar. In such 
instances, as already described in section 4.2.1, to obtain the solution of Eq. (14.2) it is 
necessary to resort to either trick (2), which however leads to a rather inaccurate solution, or 
trick (3), which however implies a large computational effort. 
In terms of computational efficiency, it is worth highlighting that the solution represented 
by Eqs. (15) requires the calculation of the SVD of a 3 × 3 matrix, while the solutions 
represented by equations (14) and (16) require the calculation of the polar decomposition 
(PD) of a 3 × 3 matrix. In general the algorithms available for the computation of the PD are 
more efficient than those available for the computation of the SVD. However, when 3 × 3 
matrices are of concern, fast and robust solutions of the SVD exist which require fewer 
calculations than those required by the PD of 3 × 3 matrices. As a matter of fact, the SVD of a 
3 × 3 matrix can be obtained via non-iterative algorithms. As an example, an improved 
version of the algorithm presented in (Vertechy & Parenti-Castelli, 2004), which is based on 
the analytical solution of the cubic equation, requires only 150 multiplications/divisions, 88 
sums/subtractions, 5 square root evaluations and 4 trigonometric evaluations to obtain the 
full SVD. Conversely, the algorithms available for the PD are iterative. In particular, 
considering the most well known and adopted algorithms, the PD of 3 × 3 matrices via the 
routine proposed in (Dubrulle, 1999) requires (87 + kD⋅78) multiplications/divisions,          
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(47 + kD⋅39) sums/subtractions and (4 + kD⋅3) square root evaluations, where kD is the 
number of iterations required by the Dubrulle’s routine to converge; and the PD of 3 × 3 
matrices via the routine proposed in (Higham, 1986) requires (48 + kH⋅63) 
multiplications/divisions, (38 + kH⋅62) sums/subtractions and (kH⋅3) square root evaluations, 
where kH is the number of iterations required by Higham’s routine to converge. In practice, 
simulations of the DPA solution of UPS-PMs employing both Dubrulle’s and Higham’s 
routines show that kD > 3 and kH > 2 when solving Eq. (14.1), and that  kD > 5 and kH > 5 
when solving Eq. (16). Note that the solution of Eq. (16) requires more iterations than those 
of Eq. (14.1) since matrix R̂  is closer to orthogonality than matrix C. 
Finally, it is worth mentioning that both Dubrulle’s and Higham’s routines involve the 
matrix inversion operation of either R̂  or C and, thus, both Eq. (14.1) and Eq. (16) require 
such matrices to have full rank. Again, this is not the case whenever points Pi‘s (i = 1, …, n) 
are coplanar, and this requires resorting to either trick (2), which leads to a rather inaccurate 
solution, or trick (3). In this latter case, once the SVD of either C or R̂  is calculated (i.e. 
either C = UDVT or ˆ T=R UDV ), the solution of Eq. (14.1) and Eq. (16) is found as R = UVT. 
Hence, generally, in order to find a unique and accurate solution of the DPA, the 
computation of the SVD of either C or R̂  is anyway required. 

5. Conclusions 
This chapter addresses the solution of the direct position analysis (DPA) of parallel 
manipulators. More specifically, it focuses on the determination of the actual configuration 
of parallel manipulators, which have legs of type UPS (where U, S and P are for universal, 
spherical and prismatic pairs respectively), by using extra-sensor data, that is a number of 
sensor data which is greater than the number of manipulator degrees of freedom. First, an 
extensive overview of the extra-sensor approaches that are available in the literature for the 
solution of the manipulator direct position analysis is provided. Second, a general method is 
described which makes it possible to solve accurately and in real-time the DPA of 
manipulators having general architecture, general sensor layouts and sensor data affected 
by measurement errors. The method, however, may suffer from singularities of the set of 
sensor data. Third, a novel method is presented which, by exploiting a suitable sensor 
layout, makes it possible to solve robustly, accurately and in real-time the direct position 
analysis of manipulators having general architecture and sensor data affected by 
measurement errors. A comparison with other methods based on mathematical proofs is 
provided that shows the accuracy and the computational efficiency of the proposed novel 
method. 
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1. Introduction 
The kinematic analysis of parallel kinematic machines (PKM) is a challenging field, since 
PKM are complex multi-body systems involving a couple of closed kinematic loops. It is 
well-known that the forward kinematic function has in general no closed-form solution, and 
that up to 40 different real solutions may exist for general geometry (Husty, 1996; Dietmaier, 
1998). Therefore, an efficient and handy method is needed in practise, e.g. for design, 
simulation, control, and calibration.  
The analysis of manufacturing and assembly errors of manipulators is a topic that is highly 
relevant for practical applications because the magnitude of these errors is directly coupled 
to the total cost of production of the manipulator. In this setting, there exist intensive studies 
on how to estimate the error of certain moving points, e.g. the tool center point, in terms of 
the errors in the components of the mechanism (Brisan et al., 2002; Jelenkovic & Budin, 2002; 
Kim & Choi, 2000; Song et al., 1999; Zhao et al., 2002), as well as how to allocate cost-optimal 
tolerances to a mechanism (Chase et al., 1990; Ji et al., 2000). In this paper, an approach to 
estimate the first-order influence of geometric errors on target quantities is suggested in 
which linearization is performed by considering the force transmission of the manipulator. 
This enables one to obtain a comprehensive model of linearized geometric sensitivities at a 
low computational cost. 
Error analysis for serial manipulators is relatively easy because one can establish an 
analytical expression for the forward kinematics which maps the generalized joint and link 
coordinates to the spatial displacements of the end-effector. There are numerous methods to 
parameterize the forward kinematics, where the approach of Denavit and Hartenberg (1955) 
is the most popular one. Once one has a closed-form expression for the forward kinematics, 
one can take derivatives of it (with respect to the geometric parameters one is interested in) 
and use these as sensitivity coefficients. In general, one introduces the sensitivity parameters 
in such a way that they vanish at the nominal configuration. This is always possible by 
introducing corresponding constant offsets where necessary.  
For example, consider a robot involving a universal joint, and assume that the sensitivity to 
errors in the fulfilment of the intersection property of the axes is to be analyzed. This can be 
done by adding a parameter for the normal distance between the joint axes which is zero in 
the nominal design, and with respect to which the partial derivative will yield the sought 
sensitivity. However, such a method for sensitivity analysis results in a model with a 
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significant overhead. Examples of such models for joints are presented (Brisan et al., 2002; 
Song et al., 1999). Some force-based methods for clearance analysis were introduced, which 
are similar to the approach in this paper (Innocenti, 1999; Innocenti, 2002; Parenti-Castelli & 
Venanzi, 2002 ; Parenti-Castelli & Venanzi, 2005). 
A linearization method for complex mechanisms using the kinetostatic dualism and the 
concept of kinematical differentials to efficiently set up the equations of motion of multi-body 
systems has been proposed (Kecskeméthy & Hiller, 1994). Using this method, all required 
partial derivatives can be described solely by using the kinematic transmission functions for 
position and velocity, as well as the force transmission function of the system. Based on 
these transmission functions, an algorithm is formulated for generating the Jacobian matrix 
and the equations of motion through multiple evaluations of the kinematic transmission 
functions for certain pseudo input velocities and accelerations. The corresponding 
algorithms are denoted as kinematical differentials for the case of the pure kinematic 
transmission function (Hiller & Kecskeméthy, 1989) and kinetostatic approach for the case of 
use of force transmission (Kecskeméthy, 1994). Later, Lenord et al. (2003) showed that 
kinematical differentials may be applied also to more general interdisciplinary systems 
which also involve hydraulic components by using an exact linearization through the 
kinematical differentials for the determination of the velocity linearization and numerical 
differentiation for the calculation of the stiffness matrix of the hybrid system. Other authors 
studied the determination of the stiffness matrix for complex multi-body systems using 
explicit symbolic derivatives (El-Khasawneh & Ferreira, 1998; Rebeck & Zhang, 1999), taking 
into account the stiffness of the actuators and the stiffness of special components. These 
approaches however require numerous computational steps when many sensitivity 
parameters are involved. 

2. Kinematic modeling of parallel kinematic machines 
2.1 Kinematic delimitation and geometry  
In order to study a wide range of machine types, a generic approach for the modeling of 
PKM is proposed (Pott, 2007). Since PKMs tend to be symmetric and different types of PKM 
have similar components a modular design is used. In a first step the machine is divided 
into three types of components: frames, platforms and legs (Fig. 1), which form the modules 
of the kinetostatic code.  
 

Fig. 1. Platform, legs, and machine frame modules of a generic six-degree-of-freedom 
parallel kinematic machine  
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The machine frame defines the position and orientation of six pivot points Ai. The mobile 
platform introduces the position of six pivot point Bi. Furthermore, the platform defines the 
parameterization of the six-degrees-of-freedom (dof) of spatial motion at the tool center 
point (TCP). Finally, different types of legs are introduced which mainly determine the 
kinematic behaviour. The most common legs for PKMs are PUS, UPS and RUS structures 
each consisting of an actuated prismatic (P) or revolute (R) joint as well as a pair of a 
universal (U) and a spherical (S) joints. Each of these structures can be described by one 
scalar constraint, as it is shown hereafter. 
 

 
Fig. 2. Generic model of a spatial six-degree-of-freedom parallel kinematic machine 

Each legs considered in this paper possess a pair of joints formed by a universal joint and a 
spherical joint. For the analysis of the closed-kinematic chains, these joints are known as 
characteristic pair of joints (Woernle, 1988). One can remove both of these joints and replace 
this partial chain by one nonlinear scalar constraint. This constraint describes the 
geometrical distance between the center of the universal joint and the center of the spherical 
joint for the i-th leg as  

 ai + li = r + Rbi  ,  (1) 

where ai denotes the position vector of the pivot point on the base and bi is the relative 
position of the pivot point with respect to the coordinate system fixed to the platform. The 
Cartesian position and orientation of the platform frame KTCP is given by the vector r and 
the orthogonal matrix R, respectively. The vector li denotes the length of the leg. Solving 
Eq. (1) for the magnitude li² of the vector li yields the system of six nonlinear constraints 

 (ai - r - Rbi )² - li = 0     i=1,…,6.   (2) 

The world coordinates y consist of a parameterization of the position r and the orientation 
matrix R. The geometry of the machine is expressed by the vectors ai, bi and li. In the 
following sections the definition of these vectors is introduced depending on the generalized 
coordinate qi of the six actuators and the kinematic structure of the basic types of legs for 
parallel kinematic machines. 
The UPS legs are used in the Stewart-Gough-platforms which are often applied for motion 
simulators of cars and aircrafts. The prismatic joint is actuated as linear actuator, e.g. by a 
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linear direct drive, ball bearing screw, hydraulic/pneumatic cylinder. For these mechanisms 
the pivot points Ai on the base 

 ai = ci  (3) 

are determined by the machine frame and fixed to a given position ci. The length of the strut 
can be controlled by the drive through 

 li = qi + qo   (4) 

where qo is a constant offset.  
The PUS leg results from changing the order of the joints within the UPS leg. The universal-
spherical pair encloses a leg of constant length while the proximal pivot point is actuated 
along a line. PUS legs are the basic leg components for Hexaglide, Linaglide and Linapod 
PKM. They are described by the position vector ci and the direction ui. Thus, the position of 
the proximal pivot point Ai is defined as 

 ai = ci + qi ui  ,  (5) 

where qi is the generalized coordinate of the drive. The length li=const of the strut is given 
by design.  
Finally, the kinematics of the RUS leg is considered which is the basis of the Delta-robot 
(Clavel, 1988). In contrast to the PUS leg, the proximal pivot points Ai of RUS legs move a 
circle defined by its center ci, an axis of rotation ui, and a lever vi which is given in its initial 
position. Thus, it holds for the point Ai  

 ai = ci + T(ui, qi) vi   (6) 

where T(u, q) is the rotation matrix for the axis u and the angle q as it can be calculated by 
Rodrigues formula. Again, for RUS legs the length of the strut li=const is given by design. 
 

 
Fig. 3. Geometric parameters of the leg-types under consideration  
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2.2 Review of the kinetostatic method 
In the sequel, a short introduction to the kinetostatic method (Kecskeméthy, 1993; 
Kecskeméthy, 1994) is given as a basis for the herewith presented linearization procedure. 
Below, the basic equations of the kinetostatic transmission element are reviewed for better 
reference in this paper. Details can be found in the cited papers. In the kinetostatic 
formalism, mechanical components are modeled as transmission elements (Fig. 4) that map 
the kinematic state q , q , q  at the input to the kinematic state 'q , 'q , 'q  at the output and 
the associated generalized forces Q’ at the output to generalized forces Q at the input. The 
kinetostatic state is composed of position, velocity, acceleration, and force. A mechanism is 
divided into joints and links which transmit the state from one set of coordinate frames Ki 
and scalar variables βi to another set {Ki',βi'}. This concept allows one to model serial 
manipulators as chains of transmission elements. 
 

 
Fig. 4. General kinetostatic transmission element  

Interestingly, the motion of closed kinematic loops can also be represented with the help of 
transmission functions. For simple kinematic loops with one dof, this may be done in an 
explicit form. In general, however, one has to employ iterative methods to solve the loops. 
Nevertheless, in both cases one is able to compute the transmission function for position, 
velocity, acceleration, and force. 
Assuming that the position transmission function is given as y=φ(q), where q=[q1, …, qn]T is 
a set of independent joint variables of the mechanism, the velocity transmission takes the 
form 

 q
( ) J ( )∂

= =
ϕ
φ qy q q q

q
  (7) 

For a given set of joint coordinates q, the twist y  of the end-effector frame (EEF) is a linear 
combination of the joint rates q  with the columns of the Jacobian Jq acting as coefficient 
vectors. Assuming ideal transmission behaviour within the transmission element, power is 
neither generated nor consumed. Thus, virtual work at the input and the output can be set 
equal, and one obtains 

 T T' 'δ = δq Q q Q   (8) 

where the virtual displacements fulfil q'δ = δq J q . This yields T T T
q 'δ = δq Q q J Q  and since this 

holds for any δq , the force transmission takes the form 

 T
q '=Q J Q .  (9) 



 Parallel Manipulators, Towards New Applications 

 

160 

The relations (7) and (9) for velocity transmission and force transmission is called kinetostatic 
duality. The basic idea of the kinematical differentials is to evaluate the velocity transmission 
function φ  for pseudo unit velocities T

iq̂ [0,...,1,...,0]=  with zeros everywhere up to the i-th 
component in order to identify the i-th column of the Jacobian Jq. Thus, the Jacobian Jq can 
be determined with n passes of velocity transmission. This method is called velocity-based 
Jacobian algorithm. By exploiting kinetostatic duality, this algorithm can be analogously 
applied to force transmission yielding the force-based Jacobian algorithm. Here the Jacobian Jq 
is computed row-wise by setting unit pseudo forces T

i
ˆ [0,...,1,...,0]=Q  with zeros 

everywhere besides the i-th component, performing the force mapping (9), and storing the 
resulting vector of generalized forces iQ̂  at the input as the i-th row of Jq. Thus, the Jacobian 
can be computed row-wise by six force transmissions for a general manipulator 
independently of the number of input parameters. This Jacobian evaluation procedure shall 
be further exploited here. 
The complete kinetostatic formalism is implemented in the object-oriented programming 
library Mobile that uses the C++ programming language (Kecskeméthy, 1994), and a 
differential geometric interpretation of the kinetostatics has been given in (Kecskeméthy, 
1993). 

2.3 Modular modeling of parallel kinematic machines 
As already mentioned before, the PKM is subdivided into the modules platform, frame, and 
legs. These components are the foundation of a modular kinetostatic model, which 
automatically assembles and solves the system of nonlinear constraints. The expressions 
introduced for the different legs in section 2.1 can be used to calculate the relative 
kinematics of the different types of PKM. By means of the kinetostatic method, C++ classes 
for the elementary components of multi-body systems, i.e. prismatic joints, revolute joints, 
and rigid bodies as well as the constraint solvers for kinematic loops are used for the 
modeling. These elements defined the required transmission functions for position, velocity, 
acceleration, and force. Thus, if the machine can be automatically assembled from these 
classes, one receives a comprehensive tool for the kinematic analysis of parallel robots.  
A class called generic machine assembles a kinetostatic model from the components 
introduced above. Firstly, the legs is attached to the platform and to the frame. For the 
forward kinematics the legs provide constraints that characterize which motions can be 
transmitted. The generic machine assembly module collects the constraints from the legs 
and the generalized coordinates from the platform in order to combine them to a nonlinear 
system of equations. Then a numerical procedure like a Newton-Raphson-algorithm is 
applied to solve the forward kinematics. Once the position of the platform is determined 
one can use local methods from the legs to calculate the complementary variables of the 
passive joints in each kinematic loop. 
The module frame defines the geometry of the base of the PKM by providing the position 
and orientation of the coordinate frame KCi, i=1,…,6. These coordinate frames are connected 
to the world coordinate system by rigid links. On the other hand, the coordinate frames KCi 

are the interface for the legs to be attached to it. The module platform firstly defines the end-
effectors frame KP by means of the world coordinates y=[x,y,z,ψ,θ,ξ]T with respect to the 
world coordinate frame K0 , where x,y,z define the Cartesian position of the end-effector and 
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ψ,θ,ξ are a parameterization of the special orthogonal group SO(3), e.g. by use of Bryant 
angles. The position of the platform pivot points KBi, i=1,…,6 can be defined with respect to 
the frame KP giving the geometry of the moveable platform. This presents a kinetostatic 
transmission function μ(y) mapping the world coordinates y to the pivot points KBi. The 
modules for the legs present the governing properties for the kinematic transmission of the 
PKM, i.e. by presenting the kinetostatic transmission elements for the joints and the rigid 
links. The frames KBi and KCi act as interfaces to attach the legs to the platform and the base. 
To solve the forward kinematics each type of leg presents a specific constraint υi(KBi,KCi,qi) 
which will be used by a central solver for forward kinematics. The constraint υi for the 
different types of legs basically implements equations (3) – (6). Finally, the legs implement 
functions to solve for the angles in the passive joints, i.e. computes the orientation of the 
universal and spherical joints. This can be done in an explicit way by projection techniques 
that are well-known from solving four-link bar mechanisms.  
For the forward kinematic problem one has to determine the platform world coordinates y 
from given generalized coordinates q. Based on the aforementioned modules the following 
algorithm can be used for all parallel robots treated in this work: 

1. The module frame calculates the pivot points KCi. 
2. A central constraint solver collects the constraint υi(KBi,KCi,qi) from each leg 

module. Furthermore, the constraint solver receives the function μ(y) from the 
module platform. The constraint solver uses these equations to set up the nonlinear 
system Γ(q, y)=0. 

3. The constraint solver calculates the solution y* for the system Γ(q, y)=0 with a 
Newton-Raphson-algorithm. 

4. The platform updatest the KBi with μ(y*). 
5. Each leg determines the dependent angles of the passive joints from the known 

values of (KBi,KCi,qi). 
Thus, a comprehensive algorithm for forward kinematics for the Stewart-Gough-platform, 
the Delta-robot, and Linapod like machines is presented. Note, that by using the kinetostatic 
methods one also receives these relations in terms of velocity, acceleration, and force. The 
resulting kinetostatic model can be used for a wide range of functions for kinematic analysis 
e.g. forward kinematics, calculation of the Jacobian matrix, and dexterity indexes, and 
equations of motion. The discussion of all these algorithms is out of the scope of the paper. 
In the following section, the determination of a geometrical linearization will be highlighted. 

2.4 Linearization and sensitivity analysis 
In this study, the function of the forward kinematics of a multi-body system is denoted by φ 
(q,g), where q are the generalized independent joint coordinates, and g collects all geometric 
parameters of the manipulator. The evaluation of the forward kinematics yields the world 
coordinates y of a particular point of the end-effector of a manipulator together with the 
orientation of the end-effector, which shall be denoted here as end-effector frame (EEF). For 
most of the non-serial mechanisms, the function of the forward kinematics φ is not unique, 
since there may be multiple positions for the EEF that correspond to a given set of 
generalized joint coordinates q due to different assembly modes. Here, it is assumed that it 
is possible to choose the solution that corresponds to the actual assembly mode, e.g. by 
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giving appropriate initial conditions. The linearization of the mechanism is formally 
achieved by taking the derivative with respect to the variables q and g, respectively, i.e. as  

 q g
( , ) ( , ) ( , )( , )

( , )
∂ϕ ∂ϕ ∂ϕ

δ = δ = δ + δ = δ + δ
∂ ∂ ∂

q g q g q gy q g q g J q J g
q g q g

.   (10) 

Here, quantities δy , δq , δg  denote infinitesimal variations of the aforementioned 
coordinates, while Jq denotes the well-known Jacobian matrix that is related to the kinematic 
dexterity of the manipulator. The matrix Jg is also a Jacobian matrix which characterizes the 
sensitivity of the position y of the EEF with respect to small changes, e.g. errors, in 
geometric parameters and which is used for sensitivity analysis. 
For serial manipulators with n dof, the function φ can be written analytically in terms of the 
Denavit-Hartenberg-parameters (α,θ,d,a)i (Denavit & Hartenberg, 1955) and the vector of 
the geometric parameters becomes 

 g= [α 1,θ1,d1,a1,…, α n,θn,dn,an]T.  (11) 

Thus, the Jacobian matrices Jq and Jg can be calculated symbolically for serial manipulators. 
For nontrivial robots, however, the expressions are usually so extensive that they only can 
be handled by means of computer algebra. 
Complex manipulator systems are characterized by the occurrence of closed kinematic 
loops. Such mechanisms have more joints than degrees-of-freedom, and the joint 
coordinates are coupled through closure conditions. This implies that the expressions for φ 
are either complicated, or that φ can only be computed point-wise by the iterative solution 
of an implicit system of nonlinear constraints the latter being the general case which occurs 
especially for parallel kinematic mechanisms that involve multiple coupled loops. Closed 
kinematic loops also occur in transmission mechanisms that can be found for instance in 
hydraulically driven manipulators like excavators or large scale manipulators, since they 
support the force transmission. 
To overcome the lack of an analytical forward kinematic function for complex manipulators, 
the loop closure conditions f(y,g)=0 can be utilized for sensitivity analysis; by applying 
implicit differentiation (see e.g. Wittwer et al., 2004), one obtains 

 ( , ) ( , )∂ ∂
δ + δ = δ + δ =

∂ ∂
f y g f y gy g A y B g 0

y g
.  (12) 

where y=[xT, θT]T are the world coordinates of the end-effector frame, e.g. in form of a 
position vector x in R³ and the orientation θ holding e.g. Bryant angles, and g are the 
geometric parameters. Then, one immediately obtains for the variation of the EEF world 
coordinates δy=A-1Bδg, where the matrix A-1B maps the errors δg in the components to the 
displacements δy of the EEF (Wittwer et al., 2004). 
There are certain drawbacks to this approach: First, for mechanisms with more than three 
dof, an analytical form of matrix A-1 can hardly be handled due to the length of the 
corresponding expressions. Second, if sensitivity analysis is established on the closure 
condition, one cannot access geometric parameters that are canceled ad-hoc through the 
formulation of the closure conditions. For example, the normal distance between the joint 
axes in universal joints is often eliminated because the number of closure constraints can be 
significantly reduced by assuming it to be exactly zero. 
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2.5 Linearization of manipulator systems 
 

 
Fig. 5. Velocity and force transmission in a chain of kinetostatic transmission elements  

Applying the kinetostatic formalism provides a procedure to calculate position, velocity, 
acceleration, and force transmission for an arbitrary manipulator. In general, this results in a 
chain of transmission elements as depicted in Fig. 5, where the individual mapping can also 
correspond to closed kinematic loops since such loops are also represented by transmission 
elements. In this figure, a twist T T T

i i i,⎡ ⎤= ⎣ ⎦t ω v  denotes the combination of an angular velocity 

ωi of a frame Ki and its corresponding velocity vi of its origin, both decomposed in some 
frame. A wrench T T T

i i i,⎡ ⎤= ⎣ ⎦w m f  is composed of an applied moment mi at the frame Ki and 

an applied force fi at its origin, again decomposed in some frame. Given a certain set of joint 
coordinates q, one can introduce a virtual twist displacement T T T

i i i,⎡ ⎤δ = δ δ⎣ ⎦t φ r  at the frame 

Ki, where δri is a virtual translational displacement and δφi is an infinitesimal rotational 
increment in the space of rigid-body rotations, and study the corresponding virtual twist 
displacement δtN at the EEF KN. This linear relation is given by 

 ( )N i 1 i 2 N i i 1 i
ˆ...+ + +δ = δ = δt J J J t J t ,  (13) 

where Ji denotes the Jacobian of the velocity transmission from frame Ki-1 to the frame Ki. 
Using kinematical differentials (Sec. 2.2) one calculates the Jacobian i 1

ˆ
+J , which contains the 

sensitivity of the frame KN with respect to displacements in Ki, and then concatenates the 

matrices T
iĴ  for the sought matrix T T T T

g 1 2 N
ˆ ˆ ˆ, ,...,⎡ ⎤= ⎣ ⎦J J J J . Thus, for a comprehensive 

linearization, one needs six passes of the velocity transmission function for each T
iĴ  and 

hence 6N passes for the whole manipulator. 
In contrast, one can evaluate the force transmission function, relating the wrench wN at the 
EEF to the internal wrenches T T T

i i i,⎡ ⎤= ⎣ ⎦w m f  at the intermediate frames Ki, where mi 
represents the moment being applied to the frame Ki from the base-distal subchain to the 
base-proximal subchain, and fi is the corresponding force with respect to the origin. Due to 
kinetostatic duality, one obtains  

 ( )T T
i i 1 i 2 N N i 1 N

ˆ...+ + += =w J J J w J w .   (14) 

The force transmission presents the major advantage that one can use wi+1 to determine iĴ . 
Therefore, only 6 passes of the force transmission are needed to calculate the complete 
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Jacobian Jg. This leads to the following simple algorithm to determine the sensitivity 
Jacobian Jg: 

1. Solve the forward kinematics for the desired set of joint coordinates q of the 
manipulator 

2. Choose unit forces Fx, Fy ,Fz and unit torques Mx, My, Mz with 
|Fx|=|Fy|=…=|Mz|=1 along the axes x, y, z of the EEF, respectively. 

3. For each of the unit loads described above, perform the following steps: 
a) Apply the load to the EEF and compute the internal forces/torques wi for each 

internal frame Ki one is interested in. 
b) Store the internal forces/torques wi in the respective row of the Jacobian Jg. 

 

 
         a)              b) 

Fig. 6. Planar four-bar mechanism a) with nominal geometry b) with virtual error joint for 
changes δl2 in length l2 of the coupler  

2.6 Virtual error joints 
The relations in the previous section can be intuitively illustrated by virtual error joints which 
were introduced by Woernle (1988) and extended by Pott and Hiller (2004). The basic idea is 
to insert additional independent joints which allow motion in the direction of the expected 
errors. Fig. 6a presents a mechanism that involves a kinematic loop. For this planar four-bar 
mechanism, one might wish to investigate the influence of changes in length of the coupler. 
One introduces an additional prismatic joint in which the variation of the length of the 
coupler is embodied (Fig. 6b) and the influence of changes in length of the coupler can be 
calculated by using the velocity transmission. The algorithm in Sec. 2.5 can also be derived 
using this model (Pott & Hiller, 2004), where the virtual error joints are used to measure the 
back-propagated forces. 
Based on the linearization algorithm described above, a number of applications can be 
investigated, as described next. 

3. Applications 
3.1 Manufacturing error analysis 
The Jacobian matrix Jg permits to study the influence of geometric errors on the accuracy of 
the EEF. These errors may arise from the manufacturing and assembly process of the 
manipulator. They cannot be avoided, but may be controlled through more precise, but at 
the same time more expensive manufacturing techniques. Consequently, a comprehensive 
analysis of the influence of changes in parameters is useful for optimal system design. This 
analysis is basically done evaluating the Jacobian Jg mapping parameter variations δg to the 
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displacement δy of the EEF. The magnitude of geometric errors δgi is normally small 
compared to the nominal parameter δgi. Therefore, the error estimated by the linear model 
is very close to the error calculated with the generally nonlinear model (Sec. 4.2).  
For different manipulators of the same type, the actual kinematic parameters may vary 
within the tolerance intervals defined by the manufacturing and assembly process. Here, it 
is assumed that the actual errors are Gaussian variables with a standard deviation 
proportional to the tolerance. The changes in parameters are assumed to be small and 
independent. Thus, the square of the total error is equal to the sum of squares of the single 
errors obtained by propagation of the manufacturing, clearance, and assembly errors. 
For the addition of two Gaussian variables, the standard variation of the sum becomes 

2 2
1 2σ = σ + σ , where σ1, σ2 denote the standard deviations of each summand. In the case of a 

three-dimensional vector, the total error becomes 2 2 2 2
x y ze e e eΔ = + + , where ex,ey,ez are the 

errors in the three components. For the columns of the Jacobian, one has to mix rotational 
and translational components. This requires the introduction of metric coefficients that 
relate rotations to translations and vice versa. Such metric coefficients can be regarded as 
virtual levers that map rotations at one end to translations at the other and thus generate 
sensitivities such as “long and slender” (orientations over-emphasized) or “short and thick” 
(rotations under-emphasized). Assuming that standard deviations σi are known for all 
geometric parameters, the error of the EEF becomes 

 2
k g ik i

i k
( [ ] )Δ = ρ σ∑∑e J .   (15) 

where [Jg]ik denote the entries of the Jacobian and ρk are the aforementioned metric 
coefficients. For the case of an identical standard deviation σ for all components σi one 
obtains 

 2
g ik

i k

ˆ[ ]Δ = σ = σσ∑∑e J .   (16) 

Here, σ̂  is referred to as the overall error amplification index since it estimates the sensitivity of 
the whole manipulator at a given configuration with respect to geometric errors. This index 
is similar to the statistical approach to error analysis of Wittwer et al.  (2004). 
If a certain accuracy is required for a specific task, the maximal error Δemax of the EEF is 
known and one can estimate the average standard deviation σ= Δemax/ σ̂  that is needed for 
the geometric parameters. This is illustrated in example Sec. 4.2. 

3.2 Stiffness analysis 
The linearization of a manipulator with respect to its geometric parameters provides a linear 
mapping between infinitesimal changes in the geometry and infinitesimal variations of the 
EEF. Assume Jg to be the Jacobian transmitting infinitesimal twists δti at each of the frames 
Ki to infinitesimal twists δtEEF at the end-effector frame KEEF. Moreover, denote by δwEEF a 
small wrench being applied to the end-effector frame KEEF and by δwi the corresponding 
wrenches at the frames Ki ensuring static equilibrium. The Jacobian Jg can be used to set up 
the stiffness matrix of the mechanism as follows. As pointed out in section 2.2, by 
equivalence of virtual work it holds 

 T T
g g EEF EEFδ δ = δ δw t w t .   (17) 
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where δtg=[δt1,1, δt1,2,…,δtN,6]T collects all virtual variations of the geometric parameters and 
δwg =[δw1,1, δw1,2,…,δwN,6]T are the respective internal forces. Here, each δti is decomposed 
in its six elementary components δti,1,…,δti,6, where δti,1, δti,2, δti,3 are elementary 
infinitesimal rotations and δti,4, δti,5, δti,6 are elementary translations with respect to the 
coordinate frame axis (Fig. 7). Similarly, the wrench δwi =[δwi,1,…,δwi,6]T is set up. 
Assuming that each elementary infinitesimal twist component δti,j produces a 
corresponding infinitesimal wrench component δwi,1 by means of an associated linear 
spring with stiffness coefficient ki,j, one obtains 

 1 T
g g g
− δ = δK w t  with 1

g
1,1 1,2 N,6

1 1 1diag , ,...,
k k k

−
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

K .  (18) 

 

 
Fig. 7. Decomposition of the unit twist δti at frame Ki 

Note that this assumption is a simplification of the structural properties of a general 
mechanical component that applies to many technical applications (slender bars, joints, etc.). 
The generalization to a full generic model is accomplished by a stiffness matrix in which all 
coefficients may be non-zero and which may be obtained from finite element analysis. This 
generalization is not further pursued here as is bears no new insight and is not required for 
the examples treated in this paper. A generalization is conceivable as a later step. On the 
other hand, it holds 

 1
EEF EEF EEF
− δ = δK w t .  (19) 

where KEEF is the sought stiffness matrix at the EEF. Substituting Eq. (18) and Eq. (19) into 
Eq. (17) and using the global force transmission T

g g EEFδ = = δw J w  gives 

 T 1 T T 1
EEF g g g EEF EEF EEF EEF

− −δ δ = δ δw J K J w w K w .   (20) 

Since this equation holds for any δwEEF, it follows 

 1 1 T
EEF g g g
− −=K J K J .  (21) 

Thus, the Jacobian Jg can be used to transform the stiffness coefficients ki,j of the geometric 
parameters contained in the stiffness matrix Kg to the global stiffness matrix KEEF. 
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4. Examples 
In this section, the proposed linearization technique is applied to analyze a six-dof parallel 
kinematic machine where no closed-form solution for the forward kinematics is possible. 

4.1 Error analysis for a parallel kinematic manipulator  
This example considers the six-dof parallel kinematic machine tool Linapod (Pritschow et al. 
2004; Wurst, 1998) installed at the Institute for Control Engineering of Machine Tools and 
Manufacturing Units at the University Stuttgart (Germany), see Fig. 8. Six rigid links 
connect the mobile platform to the fixed frame with spherical/universal joints. The pivot 
points on the frame are actuated by linear drives moving parallel to the z-axis. The nominal 
position lies in the center of the workspace. Errors in the length of every leg are assumed to 
be small. Applying the algorithm from section 2.5, the sensitivity matrix Jg for errors in the 
length of the bar can be established. To this end, the forward kinematic problem is solved to 
obtain the position ri and the direction ui of each of the six legs with respect to the EEF 
(Fig. 3b). The calculation of the internal forces in the bars from force equilibrium conditions 
is carried out by applying unit forces and torques (Fig. 8) to the EEF resulting in the matrix 
equation 

 

6

x y z1 6
1 6

x y z1 6

...
...

...
⎡ ⎤⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦H

A I

F F F 0 0 0u u
f f

0 0 0 M M Mχ χ
.  (22) 

where fi=fiui are the leg forces, respectively, and i i i= ×χ u r . The resulting Jacobian becomes 
T 1
g

−=J A . With the geometric parameters of Linapod (see Tab.1) the Jacobian Jg becomes  
 

 
Fig. 8. Six-dof parallel kinematic machine Linapod with fixed length legs. Unit forces and 
torques are applied to the platform.  
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 g

0.058 0.617 0.558 0.010 0.557 0.567
0.678 0.289 0.390 0.649 0.333 0.316
0.154 0.154 0.154 0.230 0.230 0.230

0.905 2.130 1.220 0.103 2.520 2.410
1.930 0.181 1.750 2.840 1.330 1.510
2.230 2.230 2.230 2.020 2.020 2.

− − −
− −
− − − − − −

=
− − −
− − −

− − −

J

020

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

.  (23) 

 
leg i ai bi ui li qi 

1 [ 0.250, 0.886, 0.0] [-0.126,  0.180, 0.2] [0,0,1] 1.25 1.221 

2 [-0.780, -0.421, 0.0] [-0.093, -0.199, 0.2] [0,0,1] 1.25 1.221 

3 [ 0.755, -0.465, 0.0] [ 0.219,  0.019, 0.2] [0,0,1] 1.25 1.221 

4 [-0.250,   0.886,  0.0] [ 0.115,  0.164, 0.4] [0,0,1] 1.70 1.933 

5 [-0.755,  -0.465,  0.0] [-0.199,  0.017, 0.4] [0,0,1] 1.70 1.933 

6 [ 0.780,  -0.421,  0.0] [ 0.085,  -0.181,  0.4] [0,0,1] 1.70 1.933 

Table 1. Geometrical Parameters for the PKM Linapod at its home position. 

 

 
Fig. 9. Difference between discrete error calculation (exact) and linearization. 

Assuming that the length error for all bars is Δe=ε[1,1,1,1,1,1]T with ε =10µm, the total 
position error is |ΔeEEF|=11.528µm. This matches the exact solution using the nonlinear 
forward kinematics up to nine digits. In Fig. 9, the effect of variations of the scaling factor on 
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the difference Δe between linearized and exact model is illustrated. As it can be verified, the 
approximation is accurate up to a geometric error of about ε =1mm. Still, for ε=10mm the 
relative error is only about 1%, which is still enough for most applications. This shows that 
the linearization procedure described in this paper is sufficient for most practical 
applications. 

4.2 Accuracy of the Linapod 
In this section, the geometric accuracy of the PKM Linapod is analyzed with the force-based 
method. Assuming errors in every component of the mechanism, the sensitivity matrix Jg 
contains 126 columns corresponding to the individual geometric parameters. Orientation 
errors are ignored as these errors are negligible with respect to the translational errors. In 
Fig. 10 the overall error amplification index according to Eq. (16) is plotted over the 
workspace. It is recognized from the diagram that the error amplification has its minimum 
in the center of the workspace, and that the error distribution is roughly circular. It is 
interesting to observe that changes in the overall error amplification are relatively small 
from about σ̂ =4.485 in the center to σ̂ =5 on the border. 
 

 
Fig. 10. Overall error-amplification σ̂  for equally distributed errors in all components. The 
lines mark the used workspace for Linapod.  

Presuming a required accuracy of Δemax=10µm which is typical for machine tools, this 
results in an average standard deviation of σ =2µm which is essential to reach the given 
accuracy. One can conclude that it is not possible to manufacture and assemble the machine 
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with state-of-the-art techniques and reasonable effort at this tolerance level. Therefore, 
additional steps like calibration are required to ensure the fulfilment of manufacturing 
requirements. 

4.3 Calculation of the stiffness matrix of the parallel robot Linapod 
As shown is Sec. 3.2, the Jacobian Jg can be used for the calculation of the geometric error 
stiffness matrix. The stiffness coefficients related to elementary geometric variations of a 
frame are set as kl = 8.8e7 Nm-1 for the lower and ku=6.0e7 Nm-1 for the upper leg. 
Furthermore, elasticity in the linear drives is taken into account with a spring constant 
kd=8.13e8 Nm-1. For the calculations, only the translational part of the stiffness matrix is 
taken into account in order to avoid mixing translational and rotational parts. The resulting 
stiffness behavior of the Linapod is depicted in Fig. 11 by plotting the minimal eigenvalue of 
the stiffness matrix over the workspace. As it can be seen, the maximum stiffness property is 
achieved at the home configuration, with softer values farer away of the home 
configuration. 
 
 

 
 

Fig. 11. Minimal eigenvalue λmin [107 Nm-1] of the stiffness matrix of the Linapod.  
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Algorithm All parameters Optimized for Linapod 

 Time (ms) Relative Time Time (ms) Relative Time 

numerical differentiation 163.92 68.87 12.31 5.17 

velocity-based Jacobian 52.13 21.90 4.33 1.82 

force-based Jacobian 2.38 1.00 2.38 1.00 
 

Table 2. Performance of different algorithms implemented in Mobile on an AMD Athlon 
1GHz for the error analysis of all 252 parameters for Linapod. Relative times compared to 
force-based Jacobian. 

4.4 Computational considerations 
In this section, the computational effort of different algorithms to calculate the sensitivity 
matrix Jg is compared. The total cost of an algorithm for the error analysis depends on the 
number of kinematic evaluations, while the administrative overhead e.g. copying and 
storing the results can be neglected. For the numerical differentiation approach, one needs 
one evaluation to solve the nominal forward kinematics and one evaluation of the position 
forward kinematics for each geometric parameter that is considered. The total numerical 
effort depends on the number of targeted geometric parameters. The velocity-based method 
(Pott et al., 2007) needs one evaluation of the velocity forward kinematics for each 
parameter. The force-based approach needs six evaluations of the force transmission. In 
Tab.2 the computational times of Mobile (Kecskeméthy, 1994) are listed. It can be seen that 
the numerical differentiation approach needs more time than the velocity-based method, 
although both need the same number of forward kinematic evaluations. The force-based 
method needs even less time than the velocity-based method. 

5. Conclusions  
The contribution describes a general method for kinematic modeling of many wide-spread 
parallel kinematic machines, i.e. for the Stewart-Gough-platform, the Delta-robot, and 
Linaglide machines. The kinetostatic method is applied for a comprehensive kinematic 
analysis of these machines. Based on that model, a general method is proposed to compute 
the linearization of the transmission behaviour from geometric parameters to the end-
effector motion of these machines. By applying the force transmission method, one can 
perform a linearization with respect to all geometric parameters, for parallel kinematic 
machines. Especially in cases where no closed-form solution for the forward kinematics is 
available, the force-based approach provides an efficient procedure for obtaining the linear 
equations. The method can be directly applied to the presented kinetostatic models of the 
manipulator and permits also to study parameters that are canceled in the closure 
conditions. The linear model is used for error analysis and calculation of the stiffness matrix. 
The algorithm provides a good numerical performance and can be applied to practical 
examples. 
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1. Introduction 
The significant advantages of parallel robots over serial manipulators are now well known. 
However, they still pose a serious challenge when considering their kinematics. This paper 
covers the state-of-the-art on modeling issues and certified solving of kinematics problems. 
Parallel manipulator architectures can be divided into two categories: planar and spatial. 
Firstly, the typical planar parallel manipulator contains three kinematics chains lying on one 
plane where the resulting end-effector displacements are restricted. The majority of these 
mechanisms fall into the category of the 3-RPR generic planar manipulator, [Gosselin 1994, 
Rolland 2006]. Secondly, the typical spatial parallel manipulator is an hexapod constituted 
by six kinematics chains and a sensor number corresponding to the actuator number, 
namely the 6-6 general manipulator, fig. 1. 
 

 

 
Fig. 1. The general 6-6 hexapod manipulators 

Solving the FKP of general parallel manipulators was identified as finding the real roots of a 
system of non-linear equations with a finite number of complex roots. For the 3-RPR, 8 
assembly modes were first counted, [Primerose and Freudenstein 1969]. Hunt geometrically 
demonstrated that the 3-RPR could yield 6 assembly modes, [Hunt 1983]. The numeric 
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iteration methods such as the very popular Newton one were first implemented, 
[Dieudonne 1972, Merlet 1987, Sugimoto 1987]. They only converge on one real root and the 
method can even fail to compute it. To compute all the solutions, polynomial equations 
were justified, [Gosselin and Angeles 1988]. Ronga, Lazard and Mourrain have established 
that the general 6-6 hexapod FKP has 40 complex solutions using respectively Gröbner 
bases, Chern classes of vector bundles and explicit elimination techniques, [Ronga and Vust 
1992, Lazard 1993, Mourrain 1993a]. The continuation method was then applied to find the 
solutions, [Raghavan 1993], however, it will be explained why they are prone to miss some 
solutions, [Rolland 2003]. Computer algebra was then selected in order to manipulate exact 
intermediate results and solve the issue of numeric instabilities related to round-off errors so 
common with purely numerical methods. Using variable elimination, for the 3-RPR, 6 
complex solutions were calculated [Gosselin 1994] and, for the 6-6, Husty and Wampler 
applied resultants to solve the FKP with success, [Husty 1996, Wampler 96]. However, 
resultant or dialytic elimination can add spurious solutions, [Rolland 2003] and it will be 
demonstrated how these can be hidden in the polynomial leading coefficients. Inasmuch, a 
sole univariate polynomial cannot be proven equivalent to a complete system of several 
polynomials. Intervals analyses were also implemented with the Newton method to certify 
results, [Didrit et al. 1998, Merlet 2004]. However, these methods are often plagued by the 
usual Jacobian inversion problems and thus cannot guarantee to find solutions in all non-
singular instances. The geometric iterative method has shown promises, [Petuya et al. 2005], 
but, as for any other iterative methods, it needs a proper initial guess. 
Hence, this justified the implementation of an exact method based on proven variable 
elimination leading to an equivalent system preserving original system properties. The 
proposed method uses Gröbner bases and the rational univariate representation, [Faugère 
1999, Rouillier 1999, Rouillier and Zimmermann 2001], implementing specific techniques in 
the specific context of the FKP, [Rolland 2005]. Three journal articles have been covering this 
question for the general planar and spatial manipulators [Rolland 2005, Rolland 2006, 
Rolland 2007]. This algebraic method will be fully detailed in this chapter. 
This document is divided into 3 main topics distributed into five sections. The first part 
describes the kinematics fundamentals and definitions upon which the exact models are 
built. The second section details the two models for the inverse kinematics problem, 
addresses the issue of the kinematics modeling aimed at its adequate algebraic resolution. 
The third section describes the ten formulations for the forward kinematics problem. They 
are classified into two families: the displacement based models and position based ones. The 
fourth section gives a brief description of the theoretical information about the selected exact 
algebraic method. The method implements proven variable elimination and the algorithms 
compute two important mathematical objects which shall be described: a Gröbner Basis and 
the Rational Univariate Representation including a univariate equation. In the fifth section, 
one FKP typical example shall be solved implementing the ten identified kinematics models. 
Comparing the results, three kinematics models shall be retained. The selected manipulator 
is a generic 6-6 in a realistic configuration, measured on a real parallel robot prototype 
constructed from a theoretically singularity-free design. Further computation trials shall be 
performed on the effective 6-6 and theoretical one to improve response times and result files 
sizes. Consequently, the effective configuration does not feature the geometric properties 
specified on the theoretical design. Hence, the FKP of theoretical designs shall be studied 
and their kinematics results compared and analyzed. Moreover, the posture analysis or 
assembly mode issue shall be covered. 
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2. Kinematics of parallel manipulator 
2.1 Kinematics notations and hypotheses 
 

 

 
Fig. 2. Typical kinematics chains  

The parallel Gough platform, namely 6-6, is constituted by six kinematics chains, fig. 2. It is 
characterized by its mechanical configuration parameters and the joint variables. The 
configuration parameters are thus OARf as the base geometry and CBRm as the mobile 
platform geometry. The joint variables are described as ρ the joint actuator positions 
(angular or linear). Lets assume rigid kinematics chains, a rigid mobile platform, a rigid base 
and frictionless ball joints between platforms and kinematics chains. 

2.2 Hexapod exact modeling 
Stringent applications such as milling or surgery require kinematics models as close as 
possible to exactness. Realistically, any effective configuration always comprises small but 
significant manufacturing errors, [Vischer 1996, Patel & Ehmann 1997]. Hence, any 
constructed parallel manipulator never corresponds to the theoretical one where specific 
geometric properties may have been chosen, for example, to alleviate singularities or to 
simplify kinematics solving. Two prismatic actuator axes may be neither collinear nor 
parallel and may not even intersect. Whilst knowing joints prone to many imperfections, 
then rotation axes are not intersecting and the angles between them are never 
perpendicular. Moreover, real ball joints differ from a perfectly circular shape and friction 
induces unforeseeable joint shape modification, which results into unknown axis changes. 
However, the joint axis angles stay almost perpendicular and any rotation combination shall 
be feasible. In a similar fashion, the Cardan joint axes are not perpendicular and may be 
separated by a small offset. Finally, the articulation center is not crossed by any axis.  
Identified the hexapode 138, the exact geometric model is then characterized by 138 
configuration parameters. Each kinematics chain is described by 23 parameters, as shown on 
fig. 2 and defined hereafter:  
• the 3 parameters of each base joint Ai with their error vector δAi , 
• the 3 joint Ai inter-axis distances є1a , є2a and є3a   
• each prismatic joint measured position li with its error coordinate δLi ,  
• the 3 parameters of the minimum distance between the two prismatic actuator axes: rd

G
,  

• the angular deviation between the two prismatic actuator axes: φ,  
• the 3 parameters of the platform joint Bi with their error vector δBi,  
• the 3 joint Bi inter-axis distances and є1b, є2b and є3b 
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To solve this model includes the determination of parameters which cannot be measured 
neither determined. Moreover, the model includes more variables than equations and 
therefore, its resolution would then only be possible through optimization methods. Relying 
on a calibration procedure would only determine configuration parameters by specifying an 
error margin consisting of a radius around joint positions and would not indicate the 
direction of the error vector. Hence, only an error ball becomes applicable to the model. In 
practice, the δAi and δBi joint error vectors shall reposition the respective kinematics chains 
by adding an offset to the joint centers. Thus, a random function shall compute the δAi and 
δBi vectors with the maximum being the error ball radius. Finally, the selected model, 
namely the hexapod 84, is effectively based on the hexapod 42 model with errors added to the 
configuration data and joint variables. 

2.3 Kinematics problems  
Definition 2.1 The kinematics model is an implicit relation between the configuration parameters 
and the posture variables, F( X

G
, Γ, OA|Rf,CB|Rm)=0 where Γ = {ρ1,ρ2,…, ρ6}. 

 

 
 

Fig. 3. Kinematics model 

Three problems can be derived from the above relation: the forward kinematics problem 
(FKP), the inverse kinematics problem (IKP) and the kinematics calibration problem, fig. 3. 
The two first problems shall be covered in this article. The inverse kinematics problem (IKP) 
is defined as: 
Definition 2.2 Given the generalized coordinates of the manipulator end-effector, find the joint 
positions.  
The 6-6 IKP yields explicit solutions from vector Γ = G( X

G
, OA|R f, CB|Rm ) and is used to 

prepare the FKP  which is defined as: 
Definition 2.3 Given the joint positions Γ, find the generalized coordinates X

G
 of the manipulator 

end-effector. 
The 6-6 FKP is a difficult problem, [Merlet 1994, Raghavan and Roth 1995] and explicit 
solutions X

G
 = G(Γ, OA|R f , CB|Rm) have not  yet been established. The difficulties in solving 

the FKP have hampered the application of parallel robot in the milling industry. 
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2.4 Vectorial formulation of the basic kinematics model 
 

 
Fig 4. The vectorial formulation  

The vectorial formulation produces an equation system which contains the same number of 
equations as the number of variables, fig. (4), [Dieudonne et al. 1972]. A closed vector cycle 
is constituted between the manipulator characteristic points: Ai and Bi, kinematics chain 
attachment points, O the fixed base reference frame and C the mobile platform reference 
frame. For each kinematics chain, a function between points Ai and Bi expresses the 
generalized coordinates X, such as i iA B

JJJJG
 = U1(X). Inasmuch, vector i iA B

JJJJG
is determined with 

the joint coordinates Γ and X giving a function U2(X, Γ). Finally, the following equality has 
to be solved: U1(X) = U2(X, Γ). 

3. The inverse kinematics problem 

For each kinematics chain, i = 1, ..., 6, each platform point |i RfOB
JJJG

can be expressed in terms of 
the distance constraint, [Merlet 1997]:  

 6...1,
22 == iBAl iii

  (1) 

Using the vectorial formulation, two equation families can be derived: displacement-based 
and position-based equations. 

3.1 Displacement based equations  
Any mobile platform position |OB  Rf

JJJG
which meets constraints 1 has a rotation matrix ℜ such 

that:  

 | | | , 1 6f f mi R i R i ROB OC CB i= +ℜ⋅ =
JJJG JJJG JJJG

…   (2) 
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Substituting 2 in 1, we obtain:  

 
2

2
| | | , 1 6f m fR i R i Ril OC CB OA i= +ℜ ⋅ − =

JJJG JJJG JJJG
…   (3) 

This last equation system can be developed and simplified, leading to the IKP : 

 ( ) ( )2 22
| | | | |f f f f mR i R R i R i R iil OC OA OC OA CB CB= − + − ℜ⋅ +

JJJG JJJG JJJG JJJG JJJG JJJG
  (4) 

3.2 Position based equations 
In 3D space, any rigid body can be positioned by 3 of its distinct non-colinear points, 
[Fischer and Daniel 1992, Lazard 1992b]. The 3 mobile platform distinct points are usually 
selected as the 3 joint centers B1, B2, B3, fig. 5. The 6 variables are set as: |i RfOB

JJJG
= [xi, yi, zi] for i 

= 1 . . . 3. The |i RfOB
JJJG

parameters define the reference frame Rb1 relative to the mobile 
platform and B1 is chosen as its center. The frame axes u1, u2 and u3 are determined by the 3 
platform points:  

 
1 1 32

1 2 3 1 2
1 2 1 3

, ,
B B B Bu u u u u
B B B B

= = = ∧

JJJG JJJJJG
JJJJJG JJJJJG  (5) 

Any platform point M can be expressed by 1B M
JJJJG

= aMu1 + bMu2 + cMu3 where aM, bM, cM are 
constants in terms of these three points. Hence, in the case of the IKP, the constants are 
noted aBi, bBi, cBi, i = i . . . 6 and can explicitly be deduced from CB|Rm by solving the 
following linear system of equations:  

 
1

1 1 2 3| , 1 6
i i ib B B Bi RB B a u b u c u i= + + =

JJJG
…   (6) 

 

 
 

Fig. 5. The platform three point coordinate system 
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Substituting relations 6 in the distance equations li2 = ║ i iA B
JJJJG

 |Rf║, i = 1 . . . 6, the system can 
be expressed with respect to the variables xi, yi, zi , i = 1, 2, 3. Thus, for i = 1 . . . 6, the IKP is 
obtained by isolating the ρi or li linear actuator variables in the six following equations:  

 ( ) ( )222 , 1...3i i ix iyi
iyl x OA OA= − + − =

JJJG JJJG   (7) 

 1

2
2

| | , 4 6b fk R k Ril B O A i= − =
JG JJJG

…   (8) 

4. The forward kinematics problem 
4.1 Displacement based equations 
There exist various formulations of the displacement based equation models. 

4.1.1 AFD1 - formulation with the position and the trigonometry identity  
The AFD1 formulation is obtained by replacing each trigonometric function of the IKP 
rotation matrix, 2, by one distinct variable, [Merlet 1987], for j = 1, 2, 3, then cj = cos(Θj), sj = 
sin(Θj). The end-effector position variables are retained. The 9 unknowns are then: {xc, yc, zc, 
c1, c2, c3, s1, s2, s3}. The orientation variables can either be any Euler angles or the navigation 
ones (pitch, yaw and roll). The orientation variables are linked by the 3 trigonometric 
identities, for j = 1 . . . 3, then c2j + s2j = 1 which complete the equation system:  

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =
JJJG JJJG JJJG JJJG JJJG

…   (9) 

 2 2 1, 1,2, 3j j jF c s j= + − =   (10)  

The system is constituted of 9 equations with 6 polynomials of degree 6 and 3 quadratics. 
The model is simply build by variable substitution without any computation. Thus, the 
coefficients remain unchanged. The number of variables is not minimal.  

4.1.2 AFD2 - formulation with the position and the trigonometric function change  
The end-effector position variables are retained. Rotation variable changes can apply the 
following trigonometric relations, [Griffis & Duffy 1989, Parenti-Castelli & C. Innocenti 1990, 
Lazard 1993]. For i = 1, 2, 3:  

 ( ) ( ) ( ) ( )
( )2

2

2 1
1cos,

1
2sin,

2
tan

i

i
i

i

i
i

i
i t

t
t

tt
+
−

=
+

=⎟
⎠
⎞

⎜
⎝
⎛= θθθ   (11) 

The 6 variables become {xc, yc, zc, t1, t2, t3}. The IKP equations (2) are rewritten to obtain the 6 
following equations:  

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =
JJJG JJJG JJJG JJJG JJJG

…   (12) 

The final equation system comprises 6 equations of order 8 with the high degree monomial 
being xi2xj2xk2xn2. This model has a minimal variable number. The polynomials coefficients 
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are expanding due to variable change computation. Moreover, this representation is not 
intuitive. 

4.1.3 AFD3 - formulation with the translation and rotation matrix  
The intuitive way to set an algebraic equation system from the IKP equations 2 is to 
straightforwardly use all the rotation matrix parameters and the vector OC

JJJG
|Rf coordinates 

as unknowns, [Lazard 1993, Sreenivasan et al. 1994, Bruyninckx and DeSchutter 1996]. The 
variables are then {Xc, Yc, Zc, rij, j=1...3, i=1...3}. Since ℜ is a rotation matrix, the following 
relations hold: ℜtℜ = Id or det(ℜ) = 1. These relations are redundant since ℜtℜ is 
symmetrical and they generate the 7 following equations:  

 

⎪
⎩

⎪
⎨

⎧

−++−−=
++=++=++=

++=++=++=

221331231231321321331221322311332211
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2
33

2
32

2
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2
23

2
22

2
21

2
13

2
12

2
11

1
0,0,0

1,1,1

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr

rrrrrrrrr
   (13)  

Six rotation matrix constraints are then selected and preferably with the lowest degree 
polynomials. This leads to an algebraic system with 12 polynomial equations (13 and 1) in 12 
unknowns.  

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =
JJJG JJJG JJJG JJJG JJJG

…   (14) 

 12
13

2
12

2
117 −++= rrrF   (15) 

 12
23

2
22

2
218 −++= rrrF   (16) 

 12
33

2
32

2
319 −++= rrrF   (17) 

 
23132212211110 rrrrrrF ++=   (18) 

 
33133212311111 rrrrrrF ++=   (19) 

 
33233222312112 rrrrrrF ++=   (20) 

Finally, the model polynomials are quadratic and minimal. They are obtained by 
substitution and no computations are required. The coefficients are then unchanged. There 
is a very large number of variables. 

4.1.4 AFD4 - formulation with the translation and Gröbner Basis on the rotation matrix 
The rotation matrix constraints are not depending on the end-effector position variables. 
Hence, if one Gröbner Basis is computed from the rotation constraints, the Gröbner Basis is 
also independent of the position variables and thus constant for any FKP pose. Therefore, 
one preliminary Gröbner Basis can be calculated and saved into a file for later reuse. 
Hence, the rotation matrix constraints in the system 20 can be replaced by their Gröbner Basis 
comprising 24 equations where the coefficients are only unity. Thus, the algebraic system 
involves 30 equations and 12 variables. 
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4.1.5 AFD5 - translation and quaternion algebraic model 
Based on equation (2), quaternions can express mobile platform rotation, [Lazard 1993, 
Mourrain 1993b, Egner 1996, Murray et al. 1997]. The quaternion representation includes 4 
variables {q0; q1; q2; q3} where the vector q  = q1 i +q2 j +q3 k defines the platform specific 
rotation axis and q0 = cos(α/2) determines the coordinate expressing the rotation α along 
that axis. Thus, the rotation matrix ℜ used in equations 4 may then be expressed in terms of 
the quaternion coordinates and with Δ2 = q02 + q12 + q22 + q32, we can write: 

 
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2
2 2
2 2

q q q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q q q q q q q

−

⎛ ⎞+ − − − +
⎜ ⎟

ℜ = + − + − −⎜ ⎟
⎜ ⎟− + − − +⎝ ⎠

Δ   (21) 

The end-effector position variables are retained. Moreover, one may implement a unitary 
quaternion: Δ2 = 1. Rewriting the IKP equations 4, we obtain 7 polynomial equations in the 7 
unknowns {Xc; Yc; Zc; q0; q1; q2; q3}: 

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =
JJJG JJJG JJJG JJJG JJJG

…   (22) 

 2 2 2 2
7 0 1 2 3 1F q q q q= + + + −   (23) 

The system contains 6 polynomials of degree 6 and 1 quadratic. The highest degree 
monomial is xi2 xj2. The quaternion has intrinsic coordinate redundancy which allows 
avoiding typical mathematical singularities seen in other representations. The number of 
variable is almost minimal. The rotation matrix system must be recomputed leading to 
larger resulting polynomial coefficients. 

4.1.6 AFD6 - translation and dual quaternion algebraic model 
Not only orientations can be formulated using quaternions, but also positions, [Husty 1996, 
Wampler 96]. The ℜ rotation matrix is then expressed in terms of the first quaternion Φ = {c0; 
c1; c2; c3}. In a sense, the second Ψ = {g1, g2, g3, g4} represents the end-effector position. 
Moreover, one relation can be written between the two quaternions: Φ = OC Ψ. This relation 
unfolds in the following equations from which two constraint equations, noted FC1 = 0 and 
FC2 = 0, are selected. Lets si = OA|Rf and ti = CB|Rm, then: 

 
1

1
0

0
2 0

t

t

t t

t t
i i

c c
g c
g g l c c
c sc g t c

=
=
− =
+ =

 For i = 2,…,6    (24) 

The dual quaternion system is thus constituted by the 8 following equations, for i = 1 … 6 : 

 ( ) ( )2
2

| | | | |f f f f mR i R R i R i Ri iF OC OA OC OA CB L= − + − ℜ⋅ −
JJJG JJJG JJJG JJJG JJJG

  (25) 

 17 FCF =   (26) 
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 28 FCF =   (27) 

The system comprises 6 polynomials of degree 4 and 2 quadratics. The highest degree 
monomials are either xi4; xi3 xj or xi2 xj2. One more variable is added over the former 
quaternion model. The variable choice is not intuitive. 

4.2 Position based equations 
We shall examine four formulations derived from the position based equations. Every 
variable has the same units and their range is equivalent. 

4.2.1 AFP1 - three point model with platform dimensional constraints 
The 3 platform distinct points are usually selected as the three joint centers B1, B2 and B3, fig. 
5. The 6 variables are set as: OB

JJJG
i|Rf = [xi, yi, zi] for i = 1 …3. 

Using the relations 6, the constraint equations Li2 = ║ i iA B
JJJJG

|Rf║2, i = 1, …, 6 can be expressed 
with respect to the variables xi, yi, zi, i = 1, 2, 3. Together with equations 30, they define an 
algebraic system with 9 equations in 9 unknowns {x1, y1, z1, x2, y2, z2, x3, y3, z3}. The resulting 
kinematics chain system becomes: 

 ( ) ( ) ( ) 3...1,2222 =−−+−+−= iLOAxOAyOAxF iixiiyiixii   (28) 

 
1

2
2

| | , 4 6b fj R j Rj jF B OA L j= − − =
JG JJJG

…   (29) 

The mobile platform geometry yields the following three distance equations: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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2

|239

2

|13
2
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2
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2

|138
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|12
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12

2
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mf

mf

mf

RR
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RR

BBzzyyxxBBF

BBzzyyxxBBF

BBzzyyxxBBF

=−+−+−−=

=−+−+−−=

=−+−+−−=

  (30) 

Together with equations 30, they produce an algebraic system with 9 equations with 9 
unknowns {x1, y1, z1, x2, y2, z2, x3, y3, z3}. In all instances, it can be easily proven that this 6-6 
FKP formulation yields 9 quadratic polynomials. 
The system variable choice is relatively intuitive. Each equation polynomial is always 
quadratic. However, the b1 reference frame and the platform points Bi in the b1 frame require 
computations, which usually result into coefficient size explosion. The variable number is 
not minimal. 

4.2.2 AFP2 - the three point model with platform constraints 
The former system can be slightly modified by replacing the last mobile platform constraint 
with a platform normal vector one. Hence, lets take the two mobile platform vectors 

1 2B B
JJJJG

and 1 3B B
JJJJG

, then the last constraint is calculated from these two vector multiplication: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
mm

mf

mf

RR

RR

RR

BBBBzzzzyyyyxxxxF

BBzzyyxxBBF

BBzzyyxxBBF

|13|231213121312139

2

|13
2

13
2

13
2

13

2

|138

2

|12
2

12
2

12
2

12

2

|127
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=−+−+−−=
 (31) 

The result is still an algebraic system with nine equations in the former nine unknowns 
 {x1, y1, z1, x2, y2, z2, x3, y3, z3}. The 6-6 FKP formulation using this three point model is 
constituted by nine quadratic polynomials. 

4.2.3 AFP3 - the three point model with constraints and function recombination 
By rewriting the IKP as functions, the algebraic system comprises three equations and three 
functions in terms of the nine variables: x1, y1, z1, x2, y2, z2, x3, y3, z3, equation (29). 

 ( ) ( ) 3...1,222 =−−+−= ilOAyOAxF iiyiixii
  (32) 

 1

2
2

| | , 4 6b fk R k Ri iC B O A l i= − − =
JG JJJG

…   (33) 

Hence, three constraints are derived from the following three functions, [Faugère and 
Lazard 1995]. Two functions can be written using two characteristic platform vector norms 
between the B1,B2 distinct points and the B1,B3 ones. The last function comes from these  
vector multiplication. 
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 (34) 

Furthermore, the three last equations (F7, F8, F9) are computed by the following function 
sequential combinations:  

F7 = −C7 + F1 + F2 

 F8 = −C8 + F1 + F3   (35) 

F9 = 2∗C9 + F7 + F8 − 2∗ F1 
The formulation is completed with other function combinations obtained by the following 
algorithm leading to three middle equations (F4, F5, F6). Let d7 = ║ 2 1B B

JJJJG
|Rmj║, d8 = 

║ 3 1B B
JJJJG

|Rm║2 and d9 = ║ 3 2B B
JJJJJG

|Rm║ ^ ║ 3 1B B
JJJJG

|Rm║, then for i = 4, 5, 6, we compute: 
 

             

( ) ( )
( ) ( )

( ) ( )
( ) ( )

iiii

ii

ii

iiiii

BBiBBB

BBii

BBii

BBBBBii

bFaFFbaFFFFdc

FFFdcFFFdcCF

FFFbFFaCC

CbaCCCcCbCaCC

∗−∗−∗−+∗+∗−+−∗∗∗−

−+∗∗∗−−+∗∗∗−=

−+∗−∗−∗−∗=

∗∗∗−−∗∗−∗−∗−=

87118979
2

7218
2

8217
2

72117

9
2
987

2
8

2
7

2

1222

22

22

2

  (36) 
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The result is an algebraic system with nine equations with the nine unknowns. The 6-6 FKP 
formulation using this modified three point model includes six quadratic and three quartic 
polynomials. The system includes polynomials of higher degree than for the former two 
position based models. Computations cause to coefficient expansion. 

4.2.4 AFP4 - the six point model 
The six mobile platform Bi joints can be used in defining 18 variables, [Rolland 2003]. Taking 
the IKP equations (8), a position based variation is obtained:  

 ( ) ( ) ( ) 6...1,2222 =−+−+−= iOAxOAyOAxl ixiiyiixii
  (37) 

The system is completed with 12 distance constraint equations selected among the distinct Bi 
passive platform joints. Here are some examples: 
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 (38) 

The formulation results in 18 polynomials in the 18 unknowns:  
{x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, x5, y5, z5, x6, y6, z6}. The system is then constituted of 
quadratic polynomials. This variable choice is intuitive and the system yields minimal 
degree. Finally, the number of variables is maximal. 

5. Solving polynomial systems using exact computation  
5.1 Mathematical system solving 
Kinematics problems contain systems of several equations containing non-linear functions 
with various variable numbers. These systems can be difficult to solve, especially in the 
general 6-6 cases and response times actually makes them inappropriate for 
implementations in design, simulation or control. In some instances, the results may appear 
to be faulty bringing doubts to the reliability of the methods. 
If left without any reliable and performing methods, the tendency, in engineering practice, 
would be to convert the difficult models into simpler linearized ones. In material handling, 
this proposal might suffice, however, in high speed milling where the accuracy 
requirements are more severe, any simplification can have a dramatic impact, whereby 
result certification becomes an important issue. 
However, with proper polynomial formulation, algebraic methods can lead to at least 
certified and even exact results, whereas numeric methods, unless they implement proper 
interval analysis, cannot actually obtain certified results since they are prone to numeric 
instabilities or matrix inversion problems. Therefore, although time consuming, algebraic 
methods are preferred since they handle integer, rational and symbolic values as such 
without any truncation or approximation, even when manipulating intermediate results. 
Hence, there will be no loss of information. 
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Solving non-linear equation systems will usually result in several complex solutions, out of 
which a certain subset are real solutions. However, only the real solutions bear practical 
significance, since they correspond to effective manipulator poses. 

5.2 Calculation accuracies 
The calculation accuracies are depending upon the type of arithmetic, the behavior of the 
calculation methods and the quality of the implemented algorithms. 
Definition 5.1 An exact calculation is defined as a calculation which always produces the same exact 
result to the same specific mathematical problem. 
The result does not contain any error. Its representation is also exact. 
Definition 5.2 A reliable computation is defined as one which will always give the same result from 
the same initial input data presented in the same format. 
Definition 5.3 A certified calculation is defined as a reliable computation giving a result distant 
from the true solution by a certain maximum known accuracy. 
Hence, such a calculation may not be exact. However, the result contains some exact digits. 
Hence, we shall try to apply a method that computes certified results and if possible exact 
ones. 
For example, lets take the univariate function f1(x) = x2 − 4/25. Computing f1 = 0, we obtain 
the exact response: {−2/5, 2/5}. The closed-form resolution calculates exact results with 
rational numbers. Therefore, the result is certified without any error. 
Lets consider f2(x) = x2 − 5. Solving f2 = 0, the result will be two irrational numbers which can 
only be represented by truncation. However an interval can be certified to contain the exact 
result: {[2, 5/2], [−5/2, 2]}. Wherefore, exact computations keep intermediate results in 
symbolic format whenever possible and only revert to rational or floating boundary 
numbers for display purposes. 
Therefore, any real number can be coded by an interval which width corresponds to the 
required accuracy. However, the difficulty lies in insuring that the interval contains the 
exact result which is not known a priori. 
 

 
Fig. 6. Bloc Diagram of the Continuation Method 

5.3 Solving a non-linear system 
Two method groups have been advocated to find all solutions of the FKP, namely: 
continuation methods and variable elimination ones, [Raghavan and Roth 1995]. The first 
approach is usually realized in a numeric environment and the later algebraic. 
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5.4 Continuation method with homothopy 
In order to compute several solutions, the continuation method can be implemented with a 
homothopy process. The Continuation approach implements a numerical iterative method 
which is successively repeated in order to progressively transfer from an original equation 
system which solutions are predetermined to another system relatively close to the former, 
Fig. 6. 
Let a system of equation be F(X) = 0 with variables X = {x1,…,xn}; we wish to find the 
solution to this equation system. Let G(X) = 0 be a similar equation system which roots are 
already known, namely the variety Vr (I)G; then, we set the continuation process as H(X, λ) = 
G(X)+ λ (F(X)−G(X)) and commence with λ = 0. It provides for a mechanism to convert an 
original equation system into a final one through several steps. At each step, H(X, λ) is 
successively computed with a new value of λ which is increased by a small arbitrary 
increment δλ such that λ ∈ {0,…, 1}. The homothopy principle assumes connectivity between 
solutions of each system computed with the various λ. More generally, if the system H(X, λ) 
with λ as a variable would be solved, it would result in paths as solutions. 
 
 

 
 

Fig. 7. Examples of path following with the Continuation Method 

The continuation method cannot solve any equation system as such and, at each step, when 
λ is instanciated, the H(X, λ) system roots are computed by a typical iterative method, either 
the Newton one or the new Geometric Iterative Method which is a potentially good alternative, 
[Petuya et al. 2005]. 
This method was first applied to classical robotics kinematics, [Tsai & Morgan 1984] and 
then applied to solve the parallel manipulator FKP, [Kholi et al. 1992, Sreenivasan and P. 
Nanua 1992]. 
Advocating that a little change on parameters of one system shall cause only a small change 
on solutions, the continuation method could be used to find the 40 solutions on some 6-6 
FKP cases, [Raghavan 1993]. 
It is feasible to construct an efficient and reliable method; however, the method is still 
unproven. Moreover, continuation does not alleviate the problems related to the application 
of a numeric iterative method. 
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This method can be somewhat delicate to implement. There exist several scenarios which 
might pose significant problems depending on how the solution paths evolve from λ = 0 to λ 
= 1, see fig. 7, where solutions: 

- go to or come from infinity, 
- merge or split, 
- start complex and become real, 
- start real and become complex. 

Therefore, proper implementation would require a priori continuation process verification 
which is still an open question, since this would require solving a one-dimensional system 
H(X,λ) where λ is left as a variable and this is an even more difficult problem. Inasmuch, in 
many instances, finding a nearby equation system with known roots may not be always be 
feasible. Then, there is also an issue on what constitutes a sufficiently similar system. 
However, it is very difficult to determine precisely what the meaning of sufficiently similar 
is. 

5.5 Variable elimination 
5.5.1 Introduction 
Most algebraic methods which were implemented to solve the parallel manipulator FKP 
apply one form of variable elimination. Let an algebraic system F(X) = 0 be a system of 
polynomial functions fi(X), i = 1,…,m with variables X = {x1,…,xn}, the variable elimination 
approach consists in the transformation of the original system F(X) = 0 into another system 
H(Y) = 0 with functions gj(X), j = 1,…,p with variables Y = {y1,…,yr} where r < n. Ultimately, 
the goal is to find a method which allows to compute an equation system H(Y) in either 
triangular format or preferably in univariate form which would be the easiest to solve. 
Most variable elimination methods are usually divided into four steps: 

- Step 1: Variable elimination. 
- Step 2: Solving the univariate equation. 
- Step 3: Return or extension to original system variables. 

We will examine the variable elimination methods which were successfully applied to solve 
the FKP from which two can be identified: 

- method based on resultant calculation including the so-called dialytic elimination, 
- method based on Gröbner basis calculation. 

5.5.2 Resultant method 
Variable elimination can be implemented through a recursive method based on resultants. 
As input, we give a system of equations with rational coefficients. The output will be one 
univariate polynomial equation in terms of one of the original variables. Each elimination 
step involves two polynomial equations which results in one equation with the number of 
variable reduced by one. 
Definition 5.4 [Cox et al. 1992] Let a system be F(X) = {f1,…,fn} ∈ Q[x1, … , xn]; let P = fi and  
R = fj where fi = apx1p +…+a0 and fj = bqx1q +…+bq with i, j ∈ {1, 2,…,n} and ai, bi ∈ 
Q[x2,…,xn], let p = deg(P) et r = deg(R) knowing that p, r ∈ N* ; suppose that a0 ≠ 0 and b0 ≠ 0 ; 
then Res(f, g, x1) = det(M) which is the resultant of P and R in terms of x1 where M is the identified 
as the Sylvester matrix. 
Then, the Sylvester matrix can be expressed in terms of the polynomial coefficients: 
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  (39) 

Inasmuch, we can write: Res(P, R, x1) = det(Sylv(P, R, x1). If we examine the Sylvester matrix, 
we can observe that part with the ai parameters contains m columns and the one with bi n 
columns.The following proposition holds and its proof is described in [Cox et al. 1992]: The 
resultant Res(f, g, x) is the first ideal of elimination < f, g > ∩ k[x2,…,xn]; moreover, Res(f, g, x) = 0 
iff f, g have a common factor in k[x1,…,xn] which has a positive degree in x. The nature of this 
factor has to be determined and we wish to establish if it is only one root of functions f and 
g. To answer that question, the following corollary will be employed: If f, g ∈ C[X] then Res(f, 
g, x) = 0 iff f and g contain a common root in C. This common root is determined by computing 
det(Sylv(P, R, x1) = 0. The nature of this root has to be determined, notably if it is a partial 
one and the answer will come from the following proposition, [Cox et al. 1992] : Knowing 
that f, g ∈ C[X], let a0, b0 ≠ 0 and a0, b0 ∈ C[x2,…, xn], if Res(f, g, x) ∈ C[x2,…,xn] cancels at 
(c2,…,cn), then we obtain that either a0 b0 = 0 at (c2,…,cn) or either ∃ c1 ∈ C such as f and g cancel. 
In certain instances, the head terms of the polynomials can cancel which will result in the 
cancellation of the determinant and the process consequently adds one extraneous root. 
In order to obtain the univariate equation, a recursive algorithm will be applied. Firstly, we 
calculate n − 1 resultants hk = Res(fk+1, f1, x1) on variable x1 for k = 1,…,n − 1. Secondly, we 
compute n − 2 resultants h(2)j = Res(hj+1, h1, x2) on variable x2 for j = 1,…,n − 2 and we 
continue in the same fashion until the univariate equation is determined. An almost 
triangular equation system is constructed. 
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  (40) 

The last H(xn) is the targeted univariate equation. However, this equation cannot be 
considered equivalent to the initial algebraic system because the head terms can cancel. 
The return step to original variables is performed by substituting back through the 
triangular system. The equation is solved H(xn) = 0 and we obtain a series of w roots {xn}. We 
take the w roots, one by one, which is introduced in one of the equations h1(n−2) (xn−1) = 0 or 
h2(n−2) (xn−1) = 0 and obtain the w roots {xn−1}. We continue until x1 is isolated. 
The 6-6 FKP has been solved applying resultants, [Husty 1996], in a computer algebra 
environment to avoid intermediate result truncation, since, in a sense, parameter truncation 
can be envisioned as changing the manipulator configuration. 
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A variation to the resultant method is called the dialytic elimination. Let the variable set be 
X = {x1,…,xn} of the algebraic system F(X) = 0; then select any variable xi and set it as the 
hidden variable, then a monomial vector is constructed around xi for the system F(X) which 
is expressed as W = (1, xi, xi2,…). The FKP is rewritten as a linear system in terms of W : 

 0=WA   (41) 

where : W ≠ 0 
Being a generalization of Res(P, Q, x1) = det(Sylv(P, Q, x1), it is subjected to the same risks of 
root addition through the head term cancellation. Dialytic elimination has been 
implemented to solve the FKP of the 3-RS or MSSM parallel manipulators, [Griffis and 
Duffy 1989, Dedieu and Norton 1990, Innocenti and Parenti-Castelli 1990]. Satisfactory 
results were produced on simple parallel manipulators, [Raghavan and Roth 1995]. 

5.6 Gröbner Bases 
Lets denote by Q[x1,…,xn] the ring of polynomials with rational coefficients. For any n-uple 
μ = (μ1,…, μn) ∈ Nn, lets denote by Xμ the monomial X1

μ1 ·...· Xn
μn . If < is an admissible 

monomial ordering and ( )

∑ =
=

r

i i
i

XaP
0

μ any polynomial in Q[X1,...,Xn], the following 

polynomial notations are necessary : 
- LM(P,<) = maxi=0…r , <Xμ(i) is the leading monomial of P for the order <, 
- LC(P,<) = ai with i such that LT(P) = Xμ(i) is the leading coefficient of P for <, 
- LT(P,<) = LC(P,<)· LM(P,<) is the leading term of P for <. 

Lets denote by x1,…,xn the unknowns and S = {P1 =,…,Ps} any polynomial system as a subset 
of Q[x1,…,xn]. A point α ∈ Cn is a zero of S if Pi(α) = 0 ∀i = 1…s. Actually, any large 
polynomial equation system cannot be directly or explicitly solved. Thus, it is necessary to 
revert to mathematical objects containing sufficient information for resolution. Any 
polynomial system is then described by an ideal: 
Definition 5.5 [Cox et al. 1992] An ideal I is defined as the set of all polynomial P(X) that can be 
constructed by multiplying and adding all polynomials in the ring of polynomials with the original 
polynomials in the set S. 
A Gröbner Basis G is then as a computable polynomial generator set of a selected polynomial 
set S = {P1,…,Ps} with good algorithmic properties and defined with respect to a monomial 
ordering. This basis is a mathematical object including the ideal I information. The 
lexicographic and degree reverse lexicographic (DRL) orders are usually implemented, [Cox et 
al. 1992, Geddes et al. 1994]. Given any admissible monomial ordering, the classical 
Euclidean division can be extended to reduce a polynomial by another one in Q[X1,…,Xn]. 
This polynomial reduction can be generalized to the reduction by a polynomial list. The 
reduction output depends on the monomial ordering < and the polynomial order. 
Definition 5.6 Given any admissible monomial ordering, <, a Gröbner Basis G with respect to < of 
an ideal I ⊂ Q[X1,…,Xn] is a finite subset of I such that: ∀f ∈ I , ∃g ∈ G such that LM(g,<) divides 
LM(f,<). 
Some useful Gröbner Basis properties are described in the following theorem: 
Theorem 5.1 Let G be a Gröbner Basis G of an ideal I ⊂ Q[X1,…,Xn] for any < monomial ordering, 
then a polynomial p ∈ Q[X1,…,Xn] belongs to I if and only if the reduction algorithm Reduce (p, G,< 
) = 0; the reduction does not depend on the order of the polynomials in the list of G; it can be used as a 
simplification function. 
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The classical method for computing a Gröbner Basis is based on Buchberger's algorithm 
[Buchberger et al. 1982, Buchberger 1985]. Recently, Faugère proposed more powerful 
algorithms, namely accel and F4 implemented in the FGb software, [Faugère 1999]. 

5.7 Gröbner Bases and zero dimensional systems 
Definition 5.7 [Lazard 1992a] A zero-dimensional system is defined as a mathematical equation 
system with a variety (solution set) constituted by a finite number of complex points. 
From a mathematical point of view, any variety is a valid result. From an engineering one, 
we seek a variety which represents an exploitable result. For any parallel manipulator FKP, 
the zero-dimensional systems allow pose analysis, since each real solution corresponds to each 
manipulator pose. Otherwise the problems fall in the category of rarely usable singular 
configurations. Detection of zero-dimensional systems is performed by implementing the 
following theorem: 
Theorem 5.2 Let G = {g1,…,gl} be a Gröbner Basis for any ordering < of any system S = {P1,…, Ps} 
∈ Q[X1,…,Xn]s. The two following properties are equivalent: 

- For all index i, i = 1…n, there exists a polynomial gj ∈ G and a positive integer nj such that 
Xinj = LM(gj,<);  

- The system {P1 = 0,…,Ps = 0} has a finite number of solutions in Cn. 
Hence, one can determine if the FKP resolution yields a finite or infinite number of 
solutions. This is obviously an important issue, since an algebraic system with an infinite 
number of solutions (variety of degree one or higher) cannot be directly exploited by a 
control system and failure is usually the outcome. 

5.8 The lexicographic Gröbner Basis 
The choice of the monomial ordering is critical for the Gröbner Basis computation efficiency, 
which is evaluated by the computation times, the size and the shape of the result. A 
lexicographic Gröbner Basis with X1 < X2 < … < Xn as variable order has always the following 
general shape: 
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  (42) 

Whilst computing a lexicographic Gröbner Basis using Buchberger's algorithm yields doubly 
exponential complexity in the worst case, an order change will save computation time. 
Therefore, one DRL Gröbner Basis may first be computed in dn polynomial time where d is 
the maximum total degree of the equations. Then, the DRL Gröbner Basis can be converted 
into a lexicographic one in O(nD3) arithmetic operations, [Faugère et al. 1991]. In the case of 
any zero-dimensional system, this can be done using exclusively linear algebra techniques, 
[Faugère et al. 1991]. 
Definition 5.8 Let S be a system constituted by the polynomials p1,…,ps ∈ Q[x1,…,xn], without 
square factors. Let G = {g1,…,gl} be a Gröbner Basis computed for any ordering < on the system S. If 
the univariate polynomial f(x1) is without any multiple factors, then the equation is square-free, the 
first coordinates of all solutions are distinct and the solutions yield no multiple root. Then, the system 
is considered in Shape Position . 
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If the polynomial system is in Shape Position, the Gröbner Basis has the following 
simplified univariate format: 

 f1(X1) = 0, X2 = f2(X1) = 0,…, Xn = fn(X1)    (43) 

In this format, the lexicographic Gröbner Basis can be computed directly using the F4 
algorithm, [Faugère 1999]. 

5.9 The rational univariate representation 
Another root representation is given by the Rational Univariate Representation, hereafter 
identified Rational Univariate Representation, [Rouillier 1999]. In the particular case of systems 
in Shape Position, the univariate variable is the first one in the original system ones, so that 
the Rational Univariate Representation can be written in the following format: 

 ( ) ( ) ( ) ( ){ ( )2 2 0 00, / , , /k k k n n k kh X X h X h X X h X h X= = =…   (44) 

 

 
Fig. 8. The correspondence between the Rational Univariate Representation and original 
system varieties. 
h(Xk) where 1 ≤ k ≤ n denotes the univariate equation, hi i = 0 … n the univariate return 
functions. These polynomials are elements of Q[Xk]. Inasmuch, h and h0 are coprime. 
Moreover, if the Rational Univariate Representation system is in Shape Position and if h(Xk) is 
square-free, the Rational Univariate Representation can be converted into a lexicographic 
Gröbner Basis and the Rational Univariate Representation expression can be simply computed 
from this basis. This situation is generally the case in most FKP instantiations: 

 h(Xk) = f(Xk), g(Xk) = f′ (Xk)  (45) 

Moreover, since f and f0 are coprimes, f0 is invertible modulo f; this leads to: hi = fi ⋅ (f′)−1 
modulo f , i = 2 … n. 
Definition 5.9 Let S be a system constituted by the polynomials p1,…, ps ∈ Q[x1,…,xn] and let 
 G = {g1,…,gl} be a Gröbner Basis for any ordering < of the system S. Then, the RR form is defined as 
the system R = {p1, p1

−1p2 mod G, p1
−1p3 mod G,…, p1

−1pk mod G} ∈ Q[x1,…,xn] where p1
−1 is 

calculated such that (p1 p1
−1 modulo G) = 1. 
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The rationale behind the RR form computation is to reduce the polynomial system S. The 
computed Gröbner Basis G on any ordering < of the system S is used for the system 
reduction. Then, the reduced system R resolution shall be less difficult. 
Definition 5.10 Let S be a system constituted by the polynomials p1,…,ps ∈ Q[x1,…, xn], if the 
system S is without square factors and in Shape Position and if a lexicographic Gröbner Basis is 
computable, then the system RR form R′ can be deduced. 
Since the S system reduction by a lexicographic Gröbner Basis leads to a further reduced 
system R, one can conjecture faster FKP resolution. However, in some instances, p1

−1 can 
hardly be computed and the RR form cannot be deduced. Hence, the FKP is solved by first 
computing a Gröbner Basis on a DRL order and then we rely on the aforementioned order 
change to obtain a lexicographic Gröbner Basis. In the rare instances where the FKP system is 
not in Shape Position and a lexicographic Gröbner Basis is not computable either by the RR 
form or by order change, the Rational Univariate Representation can be always be computed 
by reverting to the more robust and lengthy algorithm taking as input any monomial 
ordering Gröbner Basis and calculating the multiplication tables and matrices, [Rouillier 
1999]. 
In practice, the Rational Univariate Representation coefficients are smaller than the 
lexicographic Gröbner Basis ones, [Alonso et al. 1996]. This is the rationale behind the 
preference of the Rational Univariate Representation expression which can be computed using 
the algorithm described in [Rouillier 1999]. Anyhow, it should be deduced from a 
lexicographic Gröbner Basis if the system is in Shape Position. Hence, in any case, the 
determination of a lexicographic Gröbner Basis is first tried and then, a Rational Univariate 
Representation is computed. In fact, for any parallel manipulator FKP, the computation of the 
RR form is preferred. Finally, the method insures that the Rational Univariate Representation 
system is equivalent to the former polynomial system. Each Rational Univariate 
Representation system solution corresponds to one and only one original system solution and 
the properties are preserved, fig. 8. 

5.10 Real roots isolation 
Once the Rational Univariate Representation is computed, then the real roots of the univariate 
equation h(Xk) roots can be isolated either using rapid numeric methods or exact algebraic 
methods. As far as algebra is concerned, such computations can be performed by a method 
such as the Uspensky one based on Descartes' sign rule and Sturm's theorem. An improved 
algorithm is introduced in [Rouillier and Zimmermann 2001] applying one Vincent theorem. 
In computer algebra and in particular in the proposed method, a natural way for coding a 
real algebraic number α is given by either a square-free polynomial f with rational 
coefficients such that f(α) = 0 or an interval [l,r] with rational bounds containing α. 
Inasmuch, if β ≠ α and f(β) = 0 then β ∉ [l, r]. 
Let α be a root of h(T) represented by ( h , [l, r]), then the resolution of h(T) = 0 produces a 
solution list {α1,…, αr} = [( h , [li, ri]), i = 1 … r] where h  is the square-free part of h. 
Moreover, it is very easy to refine the intervals [li, ri] by dichotomy since h  is square-free 
which induce that sign( h (li)) ≠ sign( h (ri)) if li ≠ ri. 
Since h and h0 are coprime by definition of the Rational Univariate Representation, one can 
refine [l, r] so that it doesn't contain any real root of G. One can then simply use interval 
arithmetic to compute [l(i), r(i)] = hi/h0 ([l, r]); i = 1 … n. The complete method allows one 
solution of the equation h(T) = 0 to correspond to each solution of the system F(X) = 0 since 
the bijection is guaranteed and the properties are preserved, fig. 8. 
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Then, using the return functions hi/h0, for each α, we compute an interval product 
( ) ( )[ ]iin

i rl ,0=Π  containing [ h1/h0 (α),…, hn/h0(α)]. For refining ( ) ( )[ ]iin
i rl ,0=Π , it is sufficient to 

refine and introduce again [l, r] in the coordinate functions hi/h0; i = 1 … n. 
The Rational Univariate Representation system real root isolation requires a second step where 
the original system roots are determinated in terms of the original variables using the return 
functions provided by the Rational Univariate Representation . 
By computing a Rational Univariate Representation and then isolating the real roots as 
described above, we obtain an exact method for isolating all the real roots of any polynomial 
system with a finite number of complex roots verified during the computations using 
theorem 5.2. The Rational Univariate Representation has rational coefficients and the isolating 
intervals have rational bounds. For each solution α = (α1,…, αn), the method produces : 

- a box Bα
( ) ( )[ ]iin

i rl ,0=Π  ∈ Rn such that α ∈ Bα, (li, ri) ∈ Q2 with exact (rational) values 
and if β ≠ α is a root of the system, then β ∉ Bα; 

- a function for refining Bα up to any precision є > 0 (|ri − li| < є , ∀i = 1 … n). 

5.11 The certified method description 
Assembling the aforementioned algorithms, we obtain a complete certified method since it 
handles the intermediate results with exact representations. Taking into account the fact that 
most parallel manipulator FKP are in Shape Position, the method has been simplified, fig. 9. 
 

 
Fig. 9. Bloc diagram of the exact method 
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6. Solving the forward kinematics problem 
6.1 Solving the general 6-6 
The selected manipulator is a generic 6-6 in a realistic configuration, measured on a real 
parallel robot prototype, trying to reproduce a singularity-free theoretical SSM design. This 
example is a typical one among several successful trials which were performed to test the 
method without any failures. Even when the 6-6 FKP was in a singular pose, the method 
returned that the solution is a variety of degree one (infinite number of solutions), thus in 
singularity. 
Computations were done on a personal computer equipped with a 400 MHz Pentium II 
microprocessor including 128 bytes of random access memory. The operating system was 
Red Hat LINUX. Thus, this conservative approach allows the user to expect better 
performance. 

  

Fig. 10. The selected 6-6 hexapod manipulator 

6.1.1 Modeling the 6-6 using the three point model 
The parallel manipulator corresponding to the configuration data is shown in fig. 10. Lets 
take a typical 6-6 configuration example where construction realism introduce manipulator 
configuration deformations. It is then written in a configuration text file which includes the 
manipulator essential parameters: the coordinates of the joint center positions OA|Rf in the 
fixed base reference frame Rf and the coordinates of the joint center positions CB|Rm in the 
mobile platform reference frame Rm. In the computations, we use their simplified format, 
respectively identified as A and B. The unit is the millimeter: 
B := [ [  68410/1000,   393588/1000, 236459/1000 ], 
          [  375094/1000, -137623/1000, 236456/1000 ], 
          [  306664/1000, -256012/1000, 236461/1000 ], 
          [ -306664/1000, -255912/1000, 236342/1000 ], 
          [ -375057/1000, -137509/1000, 236464/1000 ], 
          [ -68228/1000,   393620/1000, 236400/1000 ]]: 
A := [ [ 464141/1000,   389512/1000, -178804/1000 ], 
           [ 569471/1000,   207131/1000 ,-178791/1000 ], 
           [ 1052905/10000,-597151/1000, -178741/1000 ], 
           [-1052905/10000,-597200/1000, -178601/1000 ], 
           [-569744/1000,   206972/1000, -178460/1000 ], 
           [-464454/1000,   389384/1000, -178441/1000 ]]: 
Li := [(1250^2)\$i=1..6]: 
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6.2 The ten formulation comparison 
Solving the ten FKP proposed formulations has been tried on the aforementioned example. 
Performance results are displayed on table 1 where the total real root computation times 
along with model code and name are given. This table specifies if the method terminated or 
was interrupted by the user if computations lasted more than one hour. 
Five FKP formulations led to computation termination. However, only the AFD4, AFD5, 
AFP2 and AFP3 models brought response times within an hour. For the AFD1 formulation, 
only the DRL Gröbner Basis was successfully computed. Therefore, only the three following 
models were retained: 

- AFD4 - Formulation with the translation and Gröbner Basis of the rotation matrix, 
- AFD5 - Formulation with Translation and Quaternion variables, 
- AFP3 - The three point model with constraints and function recombination. 

 

Code Method Resp. time
seconds Ending Comment

 

AFD1
AFD2
AFD3
AFD4
AFD5
AFD6
AFP1 
AFP2 
AFP3 
AFP4 

trigo. ident. 
trigo relations 

ℜ 
GB(ℜ) 

quaternion 
somas 

3-points+dist 
3pts+dist+normal

3pts+modified 
6-points 

148 
3600+ 
3600 
4,8 

59,6 
3600 

3600+ 
125,0 
10,9 

3600+ 

FGb yes
no 
yes 
yes 
yes 
no 
no 
yes 
yes 
no 

stopped 
stopped 

 
 
 

stopped 
stopped 

 
 

stopped 

Table 1. Response times for each formulations 

Table 2 shows information which can be deduced from system observation. It gives the 
variable number, equation number and the maximum degree with respect to one variable, 
file size (ASCII size in bytes) and the maximum number of digits in one coefficient. 
 

Code Method Variable number Equations number Size bytes 

AFD4 
AFD5 
AFP3 

GB on ℜ 
Quaternion 

3 pts & recomb

12 
7 
9 

30 
7 
9 

7100 
6100 
4500 

Table 2. The selected formulation characteristics 

6.3 System model analysis and selection 
Solving more examples was carried using the three selected formulations in order to 
evaluate computations. Performance is studied on the Gröbner Basis being the largest 
computed mathematical object. We compare the resulting file sizes and the computation 
response times. The computations are performed on the preceding theoretical SSM, 
identified theo, and on the corresponding real general 6-6, identified eff. 
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Robot + model 
Strategy

tgrob 
(s) 

Accel 
(s) 

F4
(s)

Gröbner 
Basis Size
(Kbytes) 

Complex 
Solution Comment 

theo_AFP3.fgb
theo_AFD5.fgb
theo_AFD4.fgb

29,06 
124,29 
28,22 

6,53 
36,24 
3600 

0,6
2,45
0,31

130 
150 
85 

36 
72 
36 

 
 

stopped 

eff_AFP3.fgb 
eff_AFD5.fgb 
eff_AFD4.fgb 

NA 
NA 
NA 

1200 
NA 
NA 

33,0
31,9
38,9

800 
790 
768 

40 
80 
40 

 

 
Table 3. DRL Gröbner basis computation times and memory usage 

As input, the manipulator configuration data include coefficients which are rational 
numbers with a six digit numerator and the number 1000 as denominator. Thus, the 
manipulator is measured at the micron accuracy. Let’s note that computations are 
proceeding with the RR form. 

6.4 DRL Gröbner Basis computations 
Three algorithms shall be applied, namely tgrob, Accel and F4 respectively the Buchberger, 
the Gb and the FGb implementations, [Faugère 1999]). Table 3 presents the computations 
times in seconds and memory space in kilobytes for the various techniques to compute a 
DRL Gröbner Basis for the three selected formulations. 
The response time discrepancy between the SSM and 6-6 is significant. Practically, a small 
even infinitesimal coefficient difference such as platform non-planarity leads to response 
times which can be either dramatically longer (15, 55 or 100 times). The Accel algorithm is 
more sensible to formulation than F4. The Accel algorithm produces lengthy computations 
using the AFD4 model. The quaternion formulation produces contradicting results, since it 
leads to significantly longer response times for the SSM, but slightly faster ones for the 6-6. 
For the 6-6, the response times and file sizes are almost equivalent. 
Applying the fast F4 algorithm, the rotation matrix model is preferred since one part of the 
system equations (13) does not depend on the studied configuration. 

6.5 Rational univariate representation computations 
The computed DRL Gröbner Basis is provided as the input to the Rational Univariate 
Representation computation algorithms. Knowing that the Rational Univariate Representation 
computation behaviour from the three formulation Gröbner bases cannot be predicted and 
lead to comparable Gröbner Basis sizes, the three Rational Univariate Representation 
computations have been performed. The following figures come from the direct calculations 
of the RR form using Faugère’s F4 algorithm for the lexicographic order followed by a 
division leading to a Rational Univariate Representation as the end-result. This strategy is 
compared with the original one which computes the Rational Univariate Representation by an 
order change (F4+FGLM). Table 4 gives the response times in seconds, memory space usage  
in kbytes, the number of complex and real roots. 
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Name F4+FGLM
(s) 

RR 
(s) 

File 
(Kbytes)

Complex
# 

Real 
# 

theo_AFP3.rur
theo_AFD5.rur
theo_AFD4.rur

NA 
NA 
NA 

2,95
NA
3,31

210 
NA 
270 

36 
72 
36 

8 
16 
8 

eff_AFP3.rur 
eff_AFD5.rur 
eff_AFD4.rur 

36,0 
3600 
17,9 

10,9
59,6
4,8 

320 
290 
300 

40 
80 
40 

8 
16 
8 

Table 4. Rational Univariate Representation response times from the RR form 

Problems were encountered with the quaternion based formulation to solve the SSM. This 
proves that even simpler hexapod configurations can be challenging. For the real 6-6 
manipulator, the RR form calculation is always faster than the computation with an order 
change. Inasmuch, our results indicate that the RR Rational Univariate Representation 
calculation using the AFD4 rotation matrix formulation is the most effective one. For the 
quaternion formulation, two solutions express the same manipulator posture, this is 
confirmed by the obtained univariate polynomial which has a total degree 80 and the 
number of real solutions also doubled. This behavior is well known in practice since the 
redundant nature of quaternions leads to two results for the same pose. Finally, the direct 
computation of a lexicographic Gröbner Basis is the right choice when using recent algorithms 
such as F4. Many instantiations were tested on various manipulator configurations and all 
FKP systems were in Shape Position and the RR form could be computed. 

6.6 FKP of typical hexapod manipulators 
6.6.1 Hexapod architecture descriptions 
 

 

  
Fig. 11. The various hexapod alternatives 
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Although the method has been shown to solve the 6-6 and SSM manipulator FKP, it is 
relevant to compare results for various hexapods which feature specific and related 
geometric properties. 
Several well-known parallel manipulators feature theoretical architectures, fig. 11. In order 
to clearly examine the configuration change impact, we have selected the first five hexapods 
as the slightly modified versions of each other, from the theoretical MSSM until the realistic 
6-6. The 6-6p design comprises the joint positions lying on the same plane for either the 
fixed base or mobile platform. The 6-6pp design is characterized by the two platforms being 
planar. The SSM design repeats the 6-6pp along with planar hexagonal platforms which are 
made by equally truncating an equilateral triangular platform, [Nanua et al. 1990]. The 
TSSM manipulators are designed by merging the ball or Cardan joints in pairs to obtain a 
truly triangular mobile platform. The MSSM is merging the ball or Cardan joints of the 
fixed base by pairs to obtain an octahedron. These theoretical design FKP are computed and 
their kinematics results compared with the general 6-6 case. For each manipulator, the 
selected configuration and joint variables of each manipulator are selected to correspond. 

6.6.2 FKP solving results 
On table 5, the results are including the manipulator type, the manipulator morphology, the 
base and platform morphology where T, S, P and NP stands respectively for triangular, 
truncated triangular, planar and not planar, the complete real root computation time, the 
number of complex roots (the univariate polynomial degree), the number of real roots and 
the Gröbner Basis size. Only the Gröbner Basis sizes are compared, since the Gröbner Basis is 
the largest mathematical object calculated by method. 
 

Robot 
type 

Mechanism
config Base Platform Time

(s) 
Complex

sols # 
Real 

sols #
Gröbner 
(kbytes) 

MSSM 
TSSM 
SSM 

6-6pp 
6-6p 
6-6 

octahedron 
hexapod 

(6|) 
(6|) 
(6|) 
(6|) 

T,P 
S,P 
S,P 
P 

NP 
NP 

T,P 
T,P 
S,P 
P 
P 

NP 

0,07 
0,08 
0,67 
1,1 
1,8 

10,4 

16 
16 
36 
40 
40 
40 

16 
16 
16 
16 
16 
16 

60 
76 
238 
390 
308 
402 

DIET 
Hexa 

Hexaglide 

(6|) 
6R-6R-6R 
6T-6R-6R 

NP 
P 
P 

NP 
S,P 
S,P 

9,9 
2,0 
0,5 

40 
40 
36 

40 
8 
8 

392 
346 
180 

Table 5. Hexapod FKP overall results and performances  

6.6.3 Discussion on the results 
The gradual passage to geometrically simpler parallel structures leads to significantly 
shorter response times. In the 6-6 case, the introduction of one planar platform reduces 
computation times by 20. Inasmuch, the passage from a theoretical SSM to a realistic 6-6 
leads to computation times which are 40 times longer. 
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With model simplification, it is notable that the real solution number is maintained. One 
could conjecture homothopy in those cases. The number of complex roots varies when the 
manipulator type changes; the MSSM and TSSM only have 16 solutions whereas the SSM 
has 36. This last result raises an important classification issue which was not formerly 
identified, [Faugère and Lazard 1995, Merlet 1997]. The SSM manipulator does not go in the 
class of 6-6 manipulators and becomes a class by itself. 
The table second section comprises FKP solving results about the hexapod obtained with the 
Dietmaier's method, [Dietmaier 1998], the Hexa and the Hexaglide with a SSM type mobile 
platform. In all instances, the Hexa, [Pierrot et al. 1991], and Hexaglide, [Hebsacker 1998] 
can feature either 36 or 40 complex solutions, this only depends on the mobile platform 
configuration. In fact, when the truncated equilateral triangle is used, then the FKP yield 36 
solutions. 
Knowing that the 6-6pp and 6-6p lead to 40 complex solutions, the new SSM class is 
characterized not only by its complex solution number but by the mobile platform and fixed 
base peculiar type. 
Therefore, the manipulators which fall into the SSM category are the ones which feature one 
specific truncated platform. 
Although Dietmaier's 6-6 FKP yields the largest number of real solutions, it does not 
necessarily lead to the longest computation times and largest result files. 
Finally, various tests were performed where leg lengths were changed such as moving the 
robot on a straight line or circles with the same 6-6 manipulator configuration. The real root 
numbers have all been an even number in the set {4,8,12,16} depending on the location 
inside the workspace. This could be considered a conjecture. The only case where only one 
real solution has been found is when a theoretical 6-6pp has its actuator values bringing the 
manipulator mobile platform to lie on the fixed base plane. This solution corresponds to two 
real coincident roots and this case can be identified as a singularity with the loss of three 
DOF since the manipulator can then only move in a plane. 

6.7 Assembly mode analyses 
The exact method allows addressing the question of assembly modes. This problem is also 
referred to as posture analysis. Assembly modes are defined as follows: 
 

Fig. 12. Posture analysis for the general 6-6 manipulator 
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Definition 6.1 Given a manipulator configuration where the fixed base, the mobile platform and 
kinematics chain lengths are specified, for a set of active joint positions, determine all the possible 
geometric assemblies for the selected manipulator. 
For the selected example, eight real solutions were obtained which geometrically represent 
the only possible assembly modes. These modes are then drafted using the XMuPAD 
environment, fig. 12. The position based models lead to root results which are directly 
usable to draw the effective postures. This exemplifies that posture analysis is feasible for 
any manipulator which can be modelled as a general 6-6 hexapod. 

7. Conclusion 
In this chapter, one complete exact method to solve the parallel manipulator FKP has been 
explained. The method was applied to the 6-6 general parallel manipulator, which is 
recognized to yield the most difficult problem, and also to various other manipulators such 
as the SSM, TSSM, MSSM, Hexa and Hexaglide. 
Moreover, the modeling of the FKP was investigated. Six displacement based models and 
two position-based models were derived for the 6-6 general parallel manipulator. 
One complete algebraic method to solve the Forward Kinematics Problem was applied. 
Although many methods can find solutions to some of these FKP systems, the proposed 
algebraic exact method insures the exactness of the real solution results, since it is based on 
one Gröbner Basis, which completely describes the ideal related to the original system. From 
this basis, one computes the Rational Univariate Representation including one univariate 
equation for root isolation. The selected algorithms always succeeded to solve any parallel 
robot FKP in all tested non-singular instances. 
The selected manipulator was a typical 6-6 hexapod known as the Gough platform in a 
calibrated configuration, measured on a real parallel robot prototype constructed from a 
theoretically singularity free SSM design. 
The 8 polynomial formulations were implemented and compared. We identified three 
models that allowed for computation termination, out of which two were retained since 
their computations occur with acceptable performances: a displacement based formulation 
with the rotation matrix Gröbner Basis with end-effector position and rotation matrix 
parameters as variables and a formulation with three points on a platform. 
Solving typical posture examples, the Rational Univariate Representation comprised a 
univariate equation of degree 40 and 8 to 12 real solutions were computed depending on the 
position in the workspace. The total computation averaged 130 seconds on a relatively old 
computer. On a faster computer, the response time falls to less than one second. Hence, this 
method can be suitable for small-scale trajectory pursuit applications.  
This result is very important since any Gröbner Basis completely describes the mathematical 
object related to the original system. From this basis, one can try to build an exact equivalent 
system with the original one including one univariate equation. Up to author’s knowledge, 
this is actually the only known method that is certified to establish a truly equivalent system 
that preserves the properties.  
Further testing led to favor the first formulation, since it yields slightly faster computations 
and it gives directly the end-effector position. The quaternion-based models can lead to 
difficulties in the case of simpler configurations and thus longer computation times, since it 
is doubling the solution number, which is explained by the Rational Univariate Representation 
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equations having a degree twice as large as the others. Moreover, one final advantage is that 
the displacement-based equations can be applied on any manipulator mobile platform.  
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1. Introduction 
Parallel manipulators have numerous advantages in comparison with serial manipulators: 
Higher stiffness, and connected with that a lower mass of links, the possibility of 
transporting heavier loads, and higher accuracy. The main drawback is, however, a smaller 
workspace. Hence, there exists an interest for the research concerning the workspace of 
manipulators. 
Parallel architectures have the end-effector (platform) connected to the frame (base) through 
a number of kinematic chains (legs). Their kinematic analysis is often difficult to address. 
The analysis of this type of mechanisms has been the focus of much recent research. Stewart 
presented his platform in 1965 [1]. Since then, several authors [2],[3] have proposed a large 
variety of designs. 
The interest for parallel manipulators (PM) arises from the fact that they exhibit high 
stiffness in nearly all configurations and a high dynamic performance. Recently, there is a 
growing tendency to focus on parallel manipulators with 3 translational DOF [4, 5, 8, 9, 10, 
11, 12, 13,]. In the case of the three translational parallel manipulators, the mobile platform 
can only translate with respect to the base. The DELTA robot (see figure 1) is one of the most 
famous translational parallel manipulators [5,6,7]. However, as most of the authors 
mentioned above have pointed out, the major drawback of parallel manipulators is their 
limited workspace. Gosselin [14], separated the workspace, which is a six dimensional 
space, in two parts : positioning and orientation workspace. He studied only the positioning 
workspace, i.e., the region of the three dimensional Cartesian space that can be attained by a 
point on the top platform when its orientation is given. A number of authors have described 
the workspace of a parallel mechanism by discretizing the Cartesian workspace. Concerning 
the orientation workspace, Romdhane [15] was the first to address the problem of its 
determination. In the case of 3-Translational DOF manipulators, the workspace is limited to 
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a region of the three dimensional Cartesian space that can be attained by a point on the 
mobile platform. 
 

 
Fig. 1: DELTA Robot (Clavel R. 1986) 

A more challenging problem is designing a parallel manipulator for a given workspace. This 
problem has been addressed by Boudreau and Gosselin [16,17], an algorithm has been 
worked out, allowing the determination of some parameters of the parallel manipulators 
using a genetic algorithm method in order to obtain a workspace as close as possible to a 
prescribed one. Kosinska et al. [18] presented a method for the determination of the 
parameters of a Delta-4 manipulator, where the prescribed workspace has been given in the 
form of a set of points. Snyman et al. [19] propose an algorithm for designing the planar 3-
RPR manipulator parameters, for a prescribed (2-D) physically reachable output workspace. 
Similarly in [20] the synthesis of 3-dof planar manipulators with prismatic joints is 
performed using GA, where the architecture of a manipulator and its position and 
orientation with respect to the prescribed worskpace were determined. 
In this paper, the three translational DOF DELTA robot is designed to have a specified 
workspace. The genetic algorithm (GA) is used to solve the optimization problem, because 
of its robustness and simplicity. 
This paper is organized as follows: Section 2 is devoted to the kinematic analysis of the 
DELTA robot and to determine its workspace. In Section 3, we carry out the formulation of 
the optimization problem using the genetic algorithm technique. Section 4 deals with the 
implementation of the proposed method followed by the obtained results. Finally, Section 5 
contains some conclusions. 

2. Kinematic analysis and workspace of the DELTA robot 
2.1 Direct and inverse geometric analyses 
The Delta robot consists of a moving platform connected to a fixed base through three 
parallel kinematic chains. Each chain contains a rotational joint activated by actuators in the 
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base platform. The motion is transmitted to the mobile platform through parallelograms 
formed by links and spherical joints (See Figure 2). 
We assume that all the 3 legs of the DELTA robot are identical in length. The geometric 
parameters of the DELTA robot are then given as: L1,L2, rA, rB, θ j for j = 1, 2, 3 defined in 
Figure 2, as well as ϕ 1j , ϕ 2j , ϕ 3j for j = 1, 2, 3 the joint angles defining the configuration of 
each leg. Let P be a point lacated on the moving plateform, the geometric model can be 
written as : 

 
(1) 

 

 
Fig. 2: The DELTA robot parameters. 

 
(2) 

 (3) 

With j = 1, .., 3 
Where [ XP YP ZP ] are the coordinates of the point P. 
In order to eliminate the passive joint variables we square and add these equations, which 
yields : 

 
(4) 
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Where j = 1, .., 3 and r = rA − rB. 

2.1.1 The direct geometric model 
The direct problem is defined by (4), where the unknowns are the location of point P = [Xp, 
Yp,Zp] for a given joint angles ϕ1j , ϕ2j , ϕ3j (j = 1, .., 3). 
This equation can be put in the following form: 

 (5) 

where, 

 

(6) 

Equation (5) represents a sphere centred in point Sj [Xj , Yj ,Zj ] and with radius L1. 
The solution of this system of equations can be represented by a point defined as the 
intersection of these three spheres. In general, there are two possible solutions, which means 
that, for a given leg lengths, the top platform can have two possible configurations with 
respect to the base. For more details see ref [21]. 

2.1.2 Inverse geometric model 
The inverse problem is defined by (4), where the unknowns are the joint angles ϕ1j , ϕ2j , ϕ3j  
(j = 1, 2, 3) for a given location of the point P = [XP , YP ,ZP ] . 

 
(7) 

which can be written as: 

 (8) 

Where, 

 

(9) 

Equation (8) can have a solution if and only if: 

 

(10) 
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For more details on the inverse geometric model of the DELTA robot see [21,22,23]. 

2.2 Workspace of the DELTA robot 
The workspace of the DELTA robot is defined as a region of the three-dimensional cartesian 
space that can be attained by a point on the platform where the only constraints taken into 
account are the ones coming from the different chains given by Equations (10). Equation (10) 
can be written as: 

 

(11) 

Equation (11) in cartesian coordinates for a torus azimuthally symmetric about the y-axis 
can be writen as follows : 

 
(12) 

Where, a = L2 and b = L1 
The set of points P satisfying hj (XP , YP ,ZP ) = 0 are the ones located on the boundary of this 
workspace. This volume is actually the result of the intersection of three tori. Each torus is 
centered in point Oj (r cosθj, rsinθj, 0) and with a minor radius given by L2 and a major radius 
given by L 1. Figure 3 shows the upper halves of these tori. In the following, we will be 
interested only in the upper half of the workspace. 
 

 
Fig. 3: The three upper halves of the tori given by hj(P) = 0 
Therefore, one can state that for a given point P (XP , YP ,ZP ): 
    if P is inside the workspace then hj (P) < 0 for j = 1, 2, 3. 
    if P is on the boundary of the workspace then hj (P) ≤  0 for j = 1, 2, 3 and hj (P) = 0 for j = 1 
or j = 2 or j = 3. 
    if P is outside the workspace then hj (P) > 0 for j = 1 or j = 2 or j = 3. 
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3. Dimensional synthesis of the DELTA robot for a given workspace 
3.1 Formulation of the problem 
The aim of this section is to develop and to solve the multidimensional, non linear 
optimization problem of selecting the geometric design variables for the DELTA robot 
having a specified workspace. This specified workspace has to include a desired volume in 
space,W. This approach is based on the optimization of an objective function using the 
genetic algorithm (GA) method. 
The dimensional synthesis of the DELTA robot for a given workspace can be defined as 
follows: 
Given : a specified volume in space W. 
Find : the smallest dimensions of the DELTA robot having a workspace that includes the 
specified volume. 
For example if the specified volume is a cube, then the workspace of the DELTA robot has to 
include the given cube. 
The optimization problem can be stated as: 

min F (I) 
Subject to 

 hj (I, P) ≤  0 for all the points P inside the specified volume W.   (13) 

xi ∈ I 

xi ∈ [ximin, ximax] 
hj : are the constraints applied on the system. 
I : is a vector containing the independent design variables. 
xi, is an element of the vector I, called individual in the genetic algorithm technique. 
ximin and ximax are the range of variation of each design variable. 
If the volume can be defined by a set of vertices Pk (k = 1,Npt), then the desired volume W is 
inside the workspace of the DELTA robot if: 

 
In this work, we will take the case where W is a cube given by Npt = 8 points (see Figure 4). 
For every workspace to be generated by a DELTA robot, the independent design variables 
are: 

 (14) 

Where H is a parameter defining how far is the specified volume from the base of the 
DELTA robot (see Figure 4). This function hj when applied to a point can be used as a 
measure of some kind of distance of this point with respect to the surface defined by hj = 0. 
In geometry, this function is called the power of the point with respect to the surface. In the 
plane, hj = 0 defines a curve. Annex I presents some theoretical background about the power 
of a point with respect to a circle. Moreover, the function hj changes its sign depending on 
which side of the surface the point is located. Therefore minimizing the function |hj(P)|, is 
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equivalent to finding the closest point to the given surface. In our case, we are looking for a 
volume bounded by three surfaces, therefore one has to minimize the function f = |h1 (I, P)| 
+ |h2 (I, P)| + |h3 (I, P)|. Figure 5 represents a mapping , f(x, y), of the power of points at a 
given height z0 = 1 as a function of x and y for a given design vector I = [1.9, 1.2, 0.9, 1]. 
 

 
Fig. 4: The scheme of the prescribed workspace. 

The function f is given by: 

 
One can notice that the minimum value of f is obtained when the point is located on the 
boundary of the workspace (see Figure 5). 
Our objective is to find the smallest set of parameters, given by I = [L1,L2, r,H] that can yield 
a DELTA robot having a workspace that includes the given volume in space W. 
The methodology followed to solve this problem is based on minimizing the power of the 
vertices, defining the given volume, and to ensure that all these vertices have a negative 
power, i.e., they are inside the workspace of the DELTA robot. This minimization problem 
will be solved using the GA method. 
It is worth noting that this procedure is valid for any convex volume defined by a set of 
vertices. 

3.2 GA optimization 
The GA is a stochastic global search method that mimics the metaphor of natural biological 
evolution [24]. GAs operate on a population of potential solutions applying the principle of 
survival of the fittest to produce better and better approximations to a solution. At each 
generation, a new set of approximations is created by the process of selecting individuals 
according to their level of fitness in the problem domain and breeding them together using 
operators borrowed from natural genetics. This process leads to the evolution of 
populations of individuals that are better suited to their environment than the individuals 
that they were created from, just as in natural adaptation. The GA differs substantially from 
more traditional search and optimization methods. The four most significant differences are: 
• GAs search a population of points in parallel, not a single point. 
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• GAs do not require derivative information or other auxiliary knowledge; only the 
objective function and corresponding fitness levels influence the directions of search. 

• GAs use probabilistic transition rules, not deterministic ones. 
• A number of potential solutions are obtained for a given problem and the choice of final 

solution can be made, if necessary, by the user. 
 

 
Fig. 5: Graphical representation of the power of a point F(X, Y ). 

In most applications involving GAs, binary coding is used. However,Wright [32] showed 
that real-coded GAs have a better performance than binary-coded GAs [25,26,27,28,29]. A 
real-coded GA is used in this work. The description of the operations necessary for this type 
of code are presented by Figure 6, more details can be found in [30]. The parameters used in 
this work are shown in Table 1. 
A penalty function method is used to handle the constraints and to ensure that the fitness of 
any feasible solution is better than infeasible ones. 
The fitness function is constructed as: 

 (15) 
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Where F1 is a penality function defined as follows: 

 
(16) 

where 

 
(17) 

Where, cf is a large positive constant. 
 

 
Fig. 6: Genetic algorithm flowchart. 

 
Tab. 1: Parameters used for the genetic algorithm. 

F1 = 0 means that all the vertices defining the volume W are contained within the workspace 
of the DELTA robot. In this case, the fitness F2 is given by 
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In the case when F1 ≠ 0, i.e., at least one of the vertices is outside the workspace, F2 is set to 
zero (F2 = 0). 

4. Results 
All the results, presented in this section, are obtained on a Pentium M processor of 1500 Mhz 
and the programs are developed under MATLAB . The calculation time, necessary for 
obtaining the optimum solution, is estimated at about 4s. 

4.1 Example 1 
In this example, the dimensions of the DELTA robot are to be determined to get the smallest 
workspace capable of containing a volume W, given by a cube with a side 2a = 2 (Figure 4). 
The bounding interval for each one of the design variables is presented in Table 2: 
 

 
Tab. 2: The bounding interal for design variables 

The optimal solution obtained by the GA for this example is presented in Table 3: 
 

 
Tab. 3: The optimal dimension of DELTA robot (example 1) 

Figure 7 presents a mapping, f, of the power of points at a given height equal to 1.01 as a 
function of x and y for the optimal solution. A 3D representation of the platform and the 
corresponding workspace along with the desired volumeW, is shown on Figure 8. Figure 9 
presents horizontal slices of the workspace at the lower and upper faces of the cube. One can 
notice that the upper vertices of the cube are exactly located on the boundary of the 
workspace; which means that the robot has to be in an extreme position (on the boundary of 
the workspace) to be able to reach these points. To avoid this problem, we propose to design 
a robot having a slightly bigger workspace defining this way a safety region. The following 
example illustrates this problem. 

4.2 Example 2 
In this second example, a distance is kept between the workspace of the DELTA robot and 
the desired volume. To have this safety region, we used the fact that a safety distance can be 
kept, during the optimization, between each vertex and the surface defining the boundary of 
the workspace. This safety distance can be translated in terms of the power of the point, 
which means that, during the optimization, a lower bound is set on the powers of all points. 
This lower bound ensures that in the final solution no point can be on the surface defining 
the boundary of the workspace, i.e., the power is zero in that case, but rather on a surface 
parallel to the boundary of the workspace. The distance between these two surfaces is 
defined as the safety distance. 
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Fig. 7: Graphical representation of the power of a point F(X, Y ) (example 1). 

 
Fig. 8: The Optimal DELTA robot for example 1. 
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In our case, the workspace is the intersection of three tori, each with L1 as a major radius and 
L2 as the minor radius. Therefore, the three corresponding tori, each with a major radius L1 

and a minor radius L2 − e, define a more restrictive volume of the workspace. The 
intersection of the smaller tori is now the bounding volume within which the desired 
volume W has to be located. In this case, we took e = 0.1L2. 
 

 
Fig. 9: Two slices of the workspace at the top and bottom of the cube. 

The new optimal solution found for the DELTA robot is given by Table 4. One can notice 
that L1 and r decreased, whereas L2 increased, compared to the previous example. The height 
of the cube with respect to the base, H, stayed almost the same. 
Figure 10 shows slices at the upper and lower faces of the cube of the workspace and the 
corresponding safety region. Figure 11 shows two cuts of the workspace with the cube 
inside it. One can notice that the vertices of the cube are kept at a minimum distance given 
by the safety distance e. 
A 3D representation of the platform and the corresponding workspace along with the 
desired volume W, is shown on Figure 12. One can notice that all the points of the cube can 
be reached by the platform without reaching an extreme configuration as it was the case, in 
the previous example. 
 

 
Tab. 4: The optimal dimension of DELTA robot with safety zone (example 2) 

 

 
Fig. 10: Two slices of the workspace at the top and bottom of the cube with a safety zone. 
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Fig. 11: Different slices of the Workspace. 

 

 
Fig. 12: The Optimal DELTA robot. 

4.3 Example 3 
In this example we propose an hexagonal prism as a prescribed workspace, given by Npt = 
13 points (see figure 13). The dimensions of the DELTA robot are to be determined to get the 
smallest workspace capable of containing a volume W, given by an hexagonal prism with a 
side b = 1. The bounding interval for each one of the design variables is presented in Table 5: 
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Tab. 5: The bounding interval for design variables 

Figure 14 and 15 present a mapping, f, of the power of a point at a given height equal to 1.67 
as a function of x and y for the optimal solution obtained by the GA presented in Table 6. 
A 3D representation of the platform and the corresponding workspace along with the 
desired volume W, are shown on Figure 16. 
 

 
Fig. 13: The scheme of an hexagonal prism prescribed workspace. 

 

 
Fig. 14: Graphical representation of the power of a point F(X, Y ) for an hexagonal prism 
prescribed workspace. 
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Tab. 6: The optimal dimension of the DELTA robot with a hexagonal prism as a prescribed 
workspace 

 
Fig. 15: Graphical representation of the power of a point F(X, Y ) for a hexagonal prism as a 
prescribed workspace. 

 

 
Fig. 16: The Optimal DELTA robot for an hexagonal prism as a prescribed workspace. 

5. Conclusion 
An optimal dimensional synthesis method suited for the DELTA robot was presente in this 
paper. An objective function, used the concept of the power of a point,which reflects the 
position of a point with respect to the boundary of the workspace. This objective function 
allowed us to find the robot having the smallest workspace containing a prespecified region. 
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The genetic algorithm method was used.The prescribed region was chosen as a cube then as 
an hexagonal prism. The obtained solution yields a workspace where some of the vertices of 
the cube or the hexagonal prism are located on the boundary of the workspace. To reach 
these points the DELTA robot has to get into extreme configurations. To avoid this problem, 
we introduced a safety distance allowing us to have all the prespecified region inside the 
workspace. The concept of the power of a point along with the GA method turned out to be 
an effective and easy tool to solve the problem of designing a DELTA robot for a specified 
workspace. This method can also be applied, in a similar manner, to any convex prismatoid 
prespecified region of the workspace. 
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A Appendix 
The power of a fixed point A (see Figure 17) with respect to a circle of radius r and center O 
is defined by the product 

 
Where, P and Q are the intersections of a line through A with the circle. The term ”power” 
was first used in this way by Jacob Steiner [33,31]. f (A) is independent of the choice of the 
line APQ. 
Now consider a point A (see Figure 17) not necessarily on the circumference of the circle. If d 
= OA is the distance between A and the circle’s center O with equation f (x, y) = x2 + y2 − r2 = 
0, then the power of the point A relative to the circle is givn by : 

 
 

 
Fig. 17: The power of the point. 

If A is outside the circle, its power is positive and it is equal to the square of the length of the 
segment AQ from A to the tangent Q to the circle through A, 

 
If A is inside the circle, then the power is negative. 
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1. Introduction 
Miniaturized products and components are part of today’s daily life. The comfort and 
security of automobiles is increased by use of micro sensors and actuators. Electronic 
devices, such as mobile phones and MP3-players, have reached very small sizes and 
miniaturized medical instruments facilitate endoscopic surgery. 
Due to the advantages of micro technological solutions, such as small dimensions and low 
weight, Micro Systems Technology (MST) is worldwide considered a key technology of the 
21st century. The new NEXUS market analysis forecasts a yearly growth of the world 
markets of 16% for products based on MST (Wicht & Bouchaud, 2005). 
Miniaturization and simultaneous function integration are leading to increased 
requirements regarding production technology as a result of scaling effects, technical and 
assembly related problems (van Brussel et al., 2000). For MST products, micro assembly 
uncertainties in the range of a few micrometers or even less than one micrometer are 
required. 

1.1 Approaches to meet the requirements for micro assembly 
At present industrial applications for micro assembly predominantly incorporate systems 
which were originally developed for 2D chip assembly in semi-conductor back-end 
production. They can be classified into three groups according to their attainable assembly 
uncertainty. Most of the positioning units of the first class are pick-and-place machines 
based on Cartesian axes with uncertainties between 30 µm and 60 μm at 3σ. The second 
group, die-bonding machines, reaches pick-and-place uncertainties of 10 µm to 12 μm at 3σ 
by means of high-precision linear drives, high-resolution camera systems as well as systems 
for controlling and compensating for influences caused by changing temperatures. Ultra-
precision die-bonders form the third class. They can be regarded as special machines for 
specific applications which were developed for the assembly of micro-optical components, 
optical fibres and especially for flip-chip assembly. They reach assembly or pick-and-place 
uncertainties of about 1 μm at 3σ. These low uncertainties can only be achieved with the 
help of special camera systems and positioning strategies. At present, these assembly 
uncertainties are always tied to a highly customized design of the assembly system adjusted 
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to the requirements of the products. This way the assembly uncertainties described are 
reached at the expense of a very low flexibility (Raatz & Hesselbach, 2007).  
For the design of micro assembly systems it is necessary to gain a high product flexibility of 
the assembly units. Solutions that provide enough flexibility to reconfigure the system 
design need to be found. Here, modularity is the key when striving for high flexibility of the 
number of quantities, product variants and manufacturing base. The precision robot 
represents the central component within the assembly system. Some fundamental 
techniques to lower the uncertainty of the precision robot and the assembly system are 
choosing an adequate kinematic structure, developing size adapted handling devices, 
integrating ultra-precision machine elements and/or using sensor guidance (Fig. 1). 
 

Precise peripherie 
(gripper, feeder)

Ultra-precision
machine elements

Sensor 
guidance

Increased accuracy 

Size adapted
handling devices

Kinematic
structure

Precision
 robot

Assembly 
system

...
 

Fig. 1. Approaches to meet the requirements of accuracy (Raatz & Hesselbach, 2007) 

1.2 Kinematic structures 
Robots can be classified in terms of their kinematic structure into serial, parallel and hybrid 
(serial/parallel) robots. Most industrial robots are based on a serial structure between the 
frame and the working platform. All joints of open kinematic chains have a single degree of 
freedom (DOF) and are active, i.e. they are actuated. The serial structure offers in principle a 
large workspace in relation to the size of the robot as well as a high orientation range. The 
relatively large moved masses are a disadvantage of serial structures regarding the 
dynamics and accuracies of the robot, since each drive must be moved along with the entire 
kinematic chain. In micro assembly, large moved masses lead to massive construction of the 
frames and the robot links related to the size of the assembled parts. 
Parallel robots are based on closed kinematic chains, i.e. they have several guiding chains 
between the base frame and the working platform, which provide a high structural stiffness. 
It is possible to install all drives in a fixed frame or at least to locate them nearby the frame, 
which results in low inertia. Drive positioning errors or tolerances in the legs are not 
necessarily added. Usually they partially compensate each other and only affect the 
positioning uncertainty of the end effector to a small extent.  
Parallel robots are well suited for highly precise handling operations, due to their high 
structural stiffness with low moved masses at the same time. Compared to serial robots, the 
miniaturization of a parallel robot is much easier because all joints are passive. In addition 
the passive joints offer the potential for integrating flexure hinges as ultra-precision machine 
elements. The small workspace compared to the robot dimensions does not become severe 
in micro assembly tasks due to the size of the objects.  
Combining a parallel structure with a serial structure the limited and position dependent 
mobility of the end effector can be overcome. For example by integrating a serial rotational 
axis into the working platform of a parallel robot, the end effector can be very well oriented. 
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1.3 Robots for micro assembly 
A number of commercial robot manufacturers and many research institutions are 
developing robots which have sufficient positioning uncertainties for micro assembly tasks. 
Serial, parallel and hybrid robot structures are used. Most serial robots for micro assembly 
use a Cartesian structure. Often they incorporate modular precision linear axes. In nearly all 
cases, direct measuring systems are used in order to rule out inaccuracies due to mechanical 
play. The repeatability of those linear axes lies typically between 0.1 µm and 1 µm. Some 
manufacturers and researchers claim that robots build with these axes reach an overall 
repeatability of 1 µm. A typical exponent of this class of robots is the Sysmelec Autoplace 
411 (Fig. 2) (Hesselbach et al., 2005). Another solution for micro assembly robots are 
conventional Scara robots in combination with redundant high-precision axes in order to 
reach a high resolution. This approach is always combined with additional sensors to 
achieve a good repeatability (Höhn, 2001). 
 

 
Fig. 2. Serial robot Sysmelec Autoplace 411 with Cartesian structure 

The development of size-adapted robots is another solution of robots for micro assembly. 
Saving costs is only possible by reducing the footprint of an assembly system due to the 
demand of a clean room environment for the production of MST products. In recent years, 
the reduction of size and costs of micro production systems has been widely discussed in 
various papers. Most of these concepts relate to one of the two general groups explained in 
the following.  
The first group consists of piezo driven, small walking micro robots and handling machines. 
These autonomous robots are suitable for positioning small objects such as the MINIMAN 
of (Fatikow, 2000), a handling device for samples in a scanning electron microscope. On the 
one hand, these micro robots are very promising for new trends such as nano assembly. By 
using autonomous robots, difficulties occur regarding the coordination and interaction of 
these robots, movement on rough surfaces and energy supply.  
The second group describes cost-efficient, size-adapted handling devices, which fill the gap 
between piezo driven, small walking micro robots and conventional robots. A possible 
solution for this strategy is to determine the highest degree of miniaturization of 
conventional robot technology, using innovative, miniaturized machine parts. With these 
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size-adapted handling devices, in the range of several centimeters to a few decimeters, 
easily scalable and highly flexible production technology can be designed. Examples of size-
adapted handling devices are the parallel robot structures Delta3 and Sigma 6 from (Clavel 
et al., 2005) and the pocket delta from (Coudourey et al., 2006). 
This chapter presents a description of four size-adapted robot mechanisms based on parallel 
and hybrid structures. For three robot mechanisms, the structures are first designed with 
conventional joints and replaced by flexure hinges as ultra-precision machine element later 
on.  
Furthermore, sensor guided assembly processes of hybrid micro systems are explained on 
the basis of one robot structure. Thus, the integration of sensor information into the robot 
control as well as the relative sensor guidance applied in the system will be presented. The 
positioning uncertainty and the assembly uncertainty of the process are described by means 
of an example of an assembly process.  

2. Size-adapted parallel and hybrid robot structures 
Various size-adapted parallel, parallel hybrid and serial hybrid robots for precision 
assembly were developed at the IWF. The main objective to develop size-adapted robot 
structures was to adapt the size of the robot cell to the size of the products. At the same time 
a good repeatability for highly precise micro assembly processes should be reached through 
the development of parallel and hybrid robot structures.  
First, a functional model of a planar robot micaboe (see section 2.2) with a parallel structure 
and 3 DOF for movement in the x-y plane and 1 DOF as a serial lifting table for movement 
in z-direction was implemented. Second, a spatial parallel hybrid robot structure micaboh 
(see section 2.3) with 6 DOF was designed. Then, a spatial parallel robot structure, Triglide 
(see section 2.4), based on a parallel structure with 3 DOF and one serial rotational axis was 
realized.  
These three robots were enhanced by integrating flexure hinges (see section 2.1) as ultra-
precision machine elements and named micaboes, micabohs and Triglides. With this machine 
elements, the conventional joints of the robot structures are replaced. 
Based on the experiences with the above mentioned robot structures, the robot micabof, 
which provides 4 DOF for part handling and, as an advanced structure, the micabof2 (see 
section 2.5), which provides 4 DOF for part handling and 1 additional DOF for focusing a 
vision sensor, were developed as planar serial hybrid robot structures.  

2.1 Pseudo-elastic flexure hinges 
One way to increase the accuracy of assembly systems is to enhance the positioning 
accuracy of the robot itself. Typical problems of parallel structures are the high number of 
joints and joints with more than one DOF. Backlash, friction and slip-stick effects in 
conventional joints often decrease the overall precision of the robot. As a result of the 
natural lack of the above mentioned disadvantages in flexure hinges, replacing conventional 
joints by flexure hinges seems to be a promising way to increase the accuracy of robots. 
Since flexure hinges gain their mobility exclusively from a deformation of matter, the 
attainable angle of rotation is limited. In order to achieve high life cycles of the hinges, the 
deformation should remain in the elastic part since plastic deformation normally induces 
defects in the material leading to an earlier crack failure (Hesselbach et al., 2004b). 



Size-adapted Parallel and Hybrid Parallel Robots for Sensor Guided Micro Assembly 

 

229 

The developed flexure hinges consist of a pseudo-elastic shape memory alloy (SMA). This 
material offers larger reversible strains than other materials, e.g. spring steel or 
thermoplastics, which are commonly used for flexure hinges. Due to the large reversible 
strains of SMA, deflections of the hinges of ±30° are possible. This approach offers the 
potential to design robots with high accuracy and resolution and with a sufficiently large 
workspace for micro assembly tasks (Hesselbach et al., 2004a). 
SMA exists in austenite and martensite phases, depending on the temperature or the 
applied stress. The temperature and stress values for stable phases mainly depend on the 
basic material, their different alloy contents and the thermo-mechanical treatment of the 
material. The thermally induced phase transformation of SMA (one way effect) is typically 
used in applications in which the SMA device is used as an actuator. We use the stress 
induced phase transformation which offers large reversible strains (super-elasticity). 
Figure 3 shows a stress-strain diagram of pseudo-elastic SMA loaded with uniaxial tensile 
stress. In its initial condition, the material is in its austenitic phase at room temperature. 
First, it deforms linear elastic under load. With increasing loads a stress-induced 
transformation of austenite into martensite is initiated at the pseudo-yield stress Rpe. The 
phase transformation is accompanied by large pseudo-elastic strains εpe with nearly constant 
stresses. The pseudo-elastic strain is reverted at a lower stress σr with a stress hysteresis. 
Since pseudo-elastic strains are reversible, the specimen completely recovers to its 
undeformed shape. These strains are often called pseudo-elastic because the reversible 
deformation is caused by a reversible phase transformation and not only due to a translation 
of atoms out of their former equilibrium position. 
 

 
Fig. 3. Stress-strain diagram of shape memory alloy  

A pseudo-elastic CuAlNiFe single crystal SMA is used for the design of flexure hinges 
because of its superior machinability and extremely large reversible strains up to 17%. The 
uniaxial stress-strain diagram of a CuAlNiFe single crystal has two pseudo-elastic stress 
plateaus, differing slightly from the example shown in Figure 3, but equivalent in principle. 
The first plateau, which is the area of interest, has a yield stress of about Rpe=200 N/mm² 
and reversible strains of ε=10%. 
A variety of different geometries of flexure hinges are proposed in the literature. They are 
designed in monolithic or hybrid processes allowing for up to 3 degrees of freedom (DOF) 
(Smith, 2000), (Paros & Weisbord, 1965). When designing flexure hinges for robots 
optimisation criteria are high accuracy and a large workspace of the robot. For the three 
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robots micaboes, micabohs and Triglides (described in section 2.2, 2.3 and 2.4) pseudo-elastic 
flexure notch hinges with R=15 mm and h=0.15 mm are used. These geometrical dimensions 
are an optimum between small kinematic deviations compared to the kinematics of an ideal 
rotational joint and small occurring strains. The pseudo-elastic material can be modelled 
with a material model by Prandtl-Reuss if the deflection curve is calculated analytically 
(Howell & Midha, 1995), (Hesselbach & Raatz, 2000) or with a multilinear elastic material 
model using the FEM tool ANSYS. With the chosen geometry and geometrical dimensions 
maximal strains are ε=2.1% at deflections of 20° and ε=4.2% at 30°. 

2.2 Planar parallel robot structures micaboe and micaboes with 3 DOF and one serial z-
axis 
The planar parallel robot structure micaboe (Fig. 4 left) provides 3 DOF. Three linear drives 
move the platform and the gripper with three guiding chains in x-y-direction and enable a 
rotation ϕ around the z-axis. The movement in the direction of the z-axis is performed by an 
additional elevation platform. The robot is driven by three piezoelectric stick-slip drives 
with a smallest step size of 5 nm and is equipped with linear encoders with a resolution of 
0.1 µm. First, the passive rotary joints were built with conventional ball bearings. A 
repeatability of 4 µm with 3 is reached, according to (EN ISO 9283, 1999). The 
characteristics of the robot micaboe are shown in Table 1. 
Figure 4 (right) shows the planar parallel robot micaboes with 3 DOF in which the 6 
conventional rotational joints are replaced by 6 flexure hinges. The motors, step sizes and 
resolution of the linear encoders are equal to the micaboe. 
 

 

Fig. 4. Planar parallel robot structures micaboe (left) and micaboes (right) 

With an assumed maximal angular deflection of ±30° at the hinges and maximal motion 
ranges of the drives of 70 mm the workspace of the robot is 40x40 mm². If flexure hinges 
with conventional spring steel are used, the angular deflection is restricted to ±5°. In this 
case the resulting workspace of the structure is about twenty times smaller compared to the 
workspace using pseudo-elastic flexure hinges. A repeatability of 1 µm with 3 is reached 
with the flexure hinges. The characteristics of the robot micaboes are shown in Table 1 as 
well. 
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Performance Data micaboe micaboes 
Max. velocity of the linear drives 0.23 m/s 
Max. velocity of the end effector 0.15 m/s 

Payload 0.1 kg 
Smallest step size 5 nm 

Resolution of linear encoders 0.1 µm 
Footprint 440x440 mm2 

Workspace translational 40x40 mm2 
Repeatability 4 µm 1 µm 

Table 1. Characteristics of the robots micaboe and micaboes (Raatz, 2006) 

2.3 Spatial parallel hybrid robot structures micaboh and micabohs with 6 DOF 
Six degree of freedom in x-, y-, z-direction and around the Euler angles ψ, θ, ϕ are realized 
with the spatial parallel hybrid robot structure micaboh (Fig. 5). Six translational high 
resolution piezo drives are used. The movement of the end effector can partly be decoupled 
from the drives by integrating planar sub chains inside a spatial structure and, at the same 
time, by defining certain dependencies between the geometric parameters. Two drives slide 
on one axis and are coupled in one planar sub chain. The sub arm links have the same 
length. The three sliding axes are parallel to the vertical axis of the coordinate system. The 
position of the lower drives defines the inclination (θ, ϕ) of the working platform as a result 
of the structural configuration. The distance between upper and lower drives defines the 
position of the working platform in the horizontal plane (x, y, ψ), and an equal movement of 
all drives leads to a movement in z-direction only (Hesselbach et al., 1997). Therefore, the 
structure is ideal for assembly tasks with a main working plane parallel to the base frame 
(Raatz, 2006). 
Experimental measurements with the robot structure micaboh with conventional joints lead 
to a worse repeatability than expected, with insufficient reproducibility. Reasons for the 
worse results of the repeatability measurements were largely attributed to the ball joints 
which were poorly adjustable (Hesselbach et al., 2004b). 
 

 
Fig. 5. Spatial parallel hybrid robot structure micaboh 
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As further development the spatial parallel hybrid robot structure micabohs (Fig. 6) is 
designed with spatial flexure hinges. Therefore, joints with one, two and three DOF have to 
be replaced. One planar sub chain consists of two links which are connected with a 
rotational joint (1 DOF). Each sub chain is connected with the drive over a universal joint (2 
DOF) and to the working platform over a ball joint (3 DOF). The universal joints and the ball 
joints are realized by a spatial combination of flexure hinges with 1 DOF. A workspace of 
40x40x18 mm³ without additional inclination of the platform is realized with the micabohs 

(Raatz, 2006). In Table 2 the characteristics of the robot structures micaboh and micabohs with 
conventional joints and flexure hinges are depicted. 
 

 
Fig. 6. Spatial parallel hybrid robot structure with flexure hinges micabohs 

In accuracy measurements, a repeatability of 3 µm was measured for the micabohs. But these 
values have to be taken very carefully since the compliant robot is prone to vibrations (in z-
direction with higher amplitudes than the repeatability values). This is due to the slip-stick 
effects of the piezo drives. Additionally, the structure has an inhomogeneous stiffness in the 
x-, y- and z- directions and the working platform is not symmetrically supported via the sub 
chains. As a consequence the damping mechanism of the spatial structure is not as good as 
the one of the planar parallel robot micaboes. 
 

Performance Data micaboh micabohs 
Max. velocity of the linear drives 0.23 m/s 
Max. velocity of the end effector 0.1 m/s 

Smallest step size 5 nm 
Resolution of linear encoders 0.1 µm 

Footprint 270x240 mm2 
Workspace translational 40x40x18 mm³ 40x40x18 mm³ 

Repeatability - 3 µm 

Table 2. Characteristics of the robots micaboh and micabohs (Raatz, 2006) 
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2.4 Spatial parallel robot structures Triglide and Triglides with 3 DOF and one serial 
rotational axis 
The spatial parallel robot structure Triglide (Fig. 7) with 3 DOF (x-, y- and z-direction) was 
developed by the IWF and the Robert Bosch company as the main component of an 
assembly cell for micro assembly purposes. Three linear drives are arranged star-shaped in 
the base plane at intervals of 120°. This leads to a nearly triangle-shaped workspace. The 
working platform is connected to each drive by two links forming a parallelogram. This 
yields to translational movements of the platform and keeps the platform plane parallel to 
the base plane. An additional rotary axes is integrated serial into the working platform. The 
orientation of the working platform is therefore only limited by the gripper size and supply 
wires. This structure is very rigid and drive errors are reduced because the ratio of the 
“platform movement” to the “drive movement” is always <1 (Hesselbach et al., 2005). In this 
configuration, the resolution of the electrical linear motors with linear encoders is 0.125 µm. 
A repeatability of 0.9 µm with 3 is reached with conventional joints.  
 

 
Fig. 7. Spatial parallel robot structure Triglide  

Figure 8 shows the compliant spatial robot Triglides with 3 DOF and 6 integrated combined 
flexure hinges. The motors, footprint, workspace and the resolution of the linear encoders 
are equal to the Triglide.  
For spatial mechanisms, flexure hinges with more than 1 DOF have to be designed. Those 
flexure hinges are realised by a spatial combination of flexure hinges with 1 DOF. A 
problem of compliant mechanisms, especially of spatial mechanisms, is their tendency to 
vibrate. Actually, the flexure hinges act as springs without any damping component, except 
for the inner damping of the deformed material. Figure 8 shows an example of increasing 
stiffness and optimising the distribution of occurring forces by a suitable design of a 
combined flexure hinge. Torsional moments can better be absorbed and transformed into 
tension and compression forces, since the hinges are arranged in a parallel and angular 
pattern (Hesselbach et al., 2004a). 
Although the workspace is nearly triangular, a cube with a dimension of 112x112x112 mm³ 
would fit into the workspace with the present configuration. If flexure hinges made of 
spring steel were used, the resulting workspace would be hundred times smaller then the 
workspace of the present design with pseudo-elastic flexure hinges. A repeatability of 
0.3 µm with 3 is reached with the flexure hinges. In Table 3, the characteristics of Triglide 
and Triglides are listed. 
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Fig. 8. Spatial parallel robot structure with flexure hinges Triglides 

 
Performance Data Triglide Triglides 

Max. velocity of the linear drives 0.2 m/s 
Max. velocity of the end effector 0.2 m/s 

Payload 1 kg 
Resolution of linear encoders 0.125 µm 

Footprint 1280x980 mm2 
Workspace translational 112x112x112 mm³ 

Repeatability 0.9 µm 0.3 µm 

Table 3. Characteristics of the robots Triglide and Triglides (Raatz, 2006) 

2.5 Planar serial hybrid robot structures micabof and micabof2 with 4 DOF 
Another hybrid robot is the planar serial hybrid robot micabof with 4 DOF (Fig. 9 left). For 
movement in the xy-plane, two parallel linear axes with a resolution of 0.1 µm are used. 
Inside the robot head, two serial mounted drives for motion in z-direction and around the z-
axis are located. Furthermore, the robot head is designed hollow for the integration of a 
camera. The micabof carries a 3D vision sensor (Tutsch & Berndt, 2003) which is integrated 
in the hollow robot head. This sensor is used for a sensor guided micro assembly with high 
accuracy. The workspace of the robot measures 120x200x15 mm³. 
This hybrid robot structure combines the advantages of parallel and serial robotic 
structures. The parallel linear axes in the xy-plane offer high stiffness. A high accuracy is 
reached in this plane because of the combination of high resolution encoders and high 
precision motors. With the help of the serial drives in the robot head, a higher range of 
rotation than in a fully parallel structure is possible. In accuracy measurements, the micabof 
reached a repeatability of 2.6 µm (see the characteristics of the robot in Table 4). 
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Fig. 9. Serial hybrid robot structures micabof (left) and micabof2 (right)  

Although a good repeatability is reached with the micabof, a self-induced vibration of the 
parallel linear drives occur, which is caused by the interaction between air bearings and 
linear drives. Neither the usage of additional dampers for the air bearings, nor optimisation 
of the control could eliminate this vibration. The parallel drives move around the desired 
position with a deviation of ±1 µm because of this vibration. Furthermore, the workspace 
does not offer enough flexibility for part feeding, clamping different work pieces or 
extending the flexibility with two additional rotational drives in the workspace for 3D 
assembly operations. This leads to a demand for a redesign that reaches the required 
repeatability in the range of 1 µm and, at the same time, offers more flexibility by a larger 
workspace with better accessibility. 
The robot micabof2 (Fig. 9 right) has 4 DOF for part handling and one additional DOF for 
focus adjustment of the former mentioned 3D vision sensor. Two parallel linear drives 
impart motion in the xy-plane. Each of them is connected to a slide that is coupled to the 
arms of the structure through rotational bearings. A hollow axis between the arms takes up 
the robot head, which is designed like a cartridge and forms the tool center point (TCP). 
Inside the robot head, two drives are installed. One of them moves a platform with a gripper 
and the other one moves the 3D vision sensor (Simnofske, 2005). The workspace is enlarged 
to 160x400x15 mm³ with better accessibility than before. In accuracy measurements, the 
micabof2 reached a repeatability of 0.6 µm (Table 4). 
 

Performance Data micabof micabof2 
Max. velocity of the linear drives 

(x, y) 0.1 m/s 

Max. acceleration of the linear drives 
(x, y) 2 g 

Payload 0.2 kg 
Resolution of linear encoders 0.1 µm 

Footprint 480x600 mm2 500x600 mm2 
Workspace translational / rotary 

angle 120x200x15 mm³ / ±45° 160x400x15 mm³ / ±180° 

Repeatability 2.6 µm 0.6 µm 

Table 4. Characteristics of the robots micabof and micabof2 
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2.6 Results of the development of size-adapted parallel and hybrid robot structures 
In the previous sections, the development of four size-adapted robot structures, each with 
two different designs of the kinematic chain, was presented. Diverse requirements for the 
workspace, accuracies and flexibility can be fulfilled as a result of the different structures. 
A small footprint is realized with the planar parallel robot structures micaboe/micaboes as 
well as with the spatial parallel hybrid structures micaboh/micabohs. A larger workspace is 
offered by the spatial parallel robot structures Triglide/Triglides and by the planar serial 
hybrid robot structures micabof/micabof2. Therefore, the footprint is larger than that those 
of the micaboe and micaboh.  
The integration of flexure hinges as ultra-precision machine elements into the size-adapted 
robot structures micaboes, micabohs and Triglides leads to a better repeatability than with 
conventional joints. All robot structures presented here offer a sufficient repeatability for 
micro assembly. The most applicable robot structure can be chosen, depending on the 
assembly task. 
The precision robot with its high accuracy is an important part of an assembly system for 
micro assembly tasks. Besides the precision robot, most assembly tasks require the use of 
additional sensors with high resolutions and measurement accuracies to reach a low 
assembly uncertainty. Furthermore, the technology of the gripper, the joining process and 
the adjustment of the assembly place influence the reachable assembly uncertainty. In 
section 3, an example of sensor guided micro assembly by use of the planar serial hybrid 
robot structure micabof2 is described. The reachable assembly uncertainty is shown on the 
basis of an assembly process. 

3. Sensor guided micro assembly 
The assembly of hybrid micro systems typically demands assembly uncertainties in the 
range of a few micrometers. To achieve this high accuracy, the precision robot is supported 
by at least one sensor. Sensors for micro assembly can be optical sensors with resolutions in 
the range of a micrometer and below or force sensors with resolutions much below 1 N. 
In the described example, the planar serial hybrid robot structure micabof2 is supported by a 
3D vision sensor and a 6D force sensor. The 3D vision sensor possesses a repeatability of 
0.22 µm in x-, 0.29 µm in y- and 0.83 µm in z-direction. The field of view covers 11 mm in 
length and 5.5 mm in width. A beam splitter is arranged in front of a miniature camera, 
which directs the images of two perspectives to the CCD chip of the camera (Berndt, 2007).  
With this vision sensor, 3D micro assembly tasks can be implemented. A positioning 
uncertainty lower than 0.5 µm can be reached with the combination of robot micabof2 and 
3D vision sensor. The reachable positioning uncertainty depends on the design of the 
assembly group and varies between 0.5 µm and 1 µm. 
The 6D force sensor features a force measuring range (x-, y- and z-direction) of ±12.5 N with 
a resolution of 0.0125 N. A measuring range of ±125 Nmm with a resolution of 0.0625 Nmm 
for torques is given by the manufacturer. A defined joining force can be guaranteed by using 
the 6D force sensor for the implementation of a force controller inside the robot control. The 
robot micabof2 is controlled by a real-time control system that is described in section 3.1. A 
description of the two methods for sensor guided micro assembly is given in section 3.2 and 
the chosen method for the presented assembly process is presented in section 3.3. The 
results of the sensor guided assembly process are shown in section 3.4. 
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3.1 Robot control 
A real-time system is used to control the robot. The hardware of the control system features 
a PowerPC750 digital signal processor (DSP) running at 480 MHz, a digital I/O board, 
analog I/O boards, an encoder board and a serial I/O board. For programming, the control 
codes in “Matlab/ Simulink” and “C” are used. An open architecture control is realized that 
can deal with almost every robotic system with up to six axes. It consists of “structure 
specific” and “not structure specific” blocks (Fig. 10). 
 

 
Fig. 10. Robot control concept 
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For use with a special robot, the “structure specific” blocks of the control have to be adapted 
to this robot structure. “Structure specific” blocks include inverse and direct kinematics, 
workspace control, monitoring, drive amplifier control, feedback position control as well as 
the allocation of data inputs and outputs. The “not structure specific” blocks, e.g. path 
planning and interpolation, do not have to be adapted.  

3.2 Sensor guidance in micro assembly processes 
Sensor guidance means that a feedback of position and/or force information is used to 
direct the positioning of the handling device during an assembly process. The information is 
given by optical or force sensors. Two different ways of data acquisition and data processing 
lead to the distinction of “absolute sensor guidance” and “relative sensor guidance”. 
In a (micro) assembly process with absolute sensor guidance, the measurements of the 
handled part and the measurements of the assembly position on a substrate are carried out 
separately. The measurements are related by transformation of the sensor information into 
the world coordinate system. A position difference is calculated and carried out by the 
handling device. Only one position correction loop is possible with this method, which is 
used e.g. for pick-and-place assembly of SMD components. 
With the method of relative sensor guidance, a simultaneous measurement of the handled 
part and the assembly position on a substrate is performed. The sensor information is 
transformed in the world coordinate system, too, and a position difference is calculated. The 
position correction can be performed in as many loops as desired. Naturally, as few 
correction loops as possible are carried out to ensure a low cycle time. 
Relative sensor guidance is used for micro assembly tasks in this example. Sensor 
information from the vision sensor must be transmitted to the robot control. Therefore, two 
different control loops are used in the robot control (Fig. 11). 
 

 
Fig. 11. Control loop with the use of sensor information 

The process control gives commands to the robot control and demands information from the 
vision sensor system. The internal control loop works in a clock frequency of 5 kHz. The 
outer control loop contains the vision sensor, which gives relative position information to 
the process control. A resulting vector of the last desired position from the robot control and 
the relative position vector from the vision system is calculated inside the process control 
and transmitted to the robot control. 
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At present, the sensor guidance works in a so called “look-and-move” procedure. This 
means that the robot’s movement stops before a new measurement of the vision sensor is 
done and a new position correction is executed. 

3.3 Example of assembly process 
As an example, the assembly of a micro linear stepping motor, according to the reluctance 
principle, is described. The motor parts are mainly manufactured with micro technologies. 
One assembly task is the joining of guides on the surface of the motor’s stator element. In 
Figure 12 (left) the assembly group of two guides on a stator is shown. Figure 12 (right) 
shows the view of the 3D vision sensor of the assembly scene.  
Circular positioning marks on the stator and guides are used by the 3D vision sensor for the 
relative positioning process. The reachable assembly uncertainty depends on the 
arrangement of the positioning marks and the length of the handled part. It is essential that 
the distances between the positioning marks are as large and the part length as small as 
possible. 
 

 

 
 

Fig. 12. Micro linear stepping motor – principle (left) and sensor view (right) 

The sequence of the assembly process is shown in Figure 13. First, the robot moves over a 
stator element and checks the positioning marks. If the marks can be recognized, the robot 
moves over one left guide and checks the positioning marks, too. If the guide is recognized, 
it is picked up with a vacuum gripper by use of sensor information for a repeatable gripping 
process. Afterwards, the robot moves with the left guide over the stator and starts the 
relative positioning process. In this process, a measurement and calculation of a relative 
positioning vector is followed by the comparison with a limit value. If the relative position 
vector is larger then the limit value, a position correction is executed with the robot. 
Otherwise, the left guide is placed on the stator by use of the previously mentioned 6D force 
sensor to assure a defined contact force and reproducible process parameters. Cyanoacrylate 
is used for the bonding process. 
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Afterwards the relative positioning process is repeated for the right guide. During the 
assembly process, according to the method of relative sensor guidance, a limit value of 
0.8 µm can be reached with the combination of the 3D vision sensor and the robot micabof2. 
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Fig. 13. Sequence of the assembly process 

3.4 Results of the sensor guided assembly process 
To quantify the precision assembly process, two terms were defined - positioning 
uncertainty and assembly uncertainty. According to (DIN ISO 230-2, 2000) the positioning 
uncertainty is the combination of the mean positioning deviation and the double standard 
deviation.  
For precision assembly processes the term positioning uncertainty refers to the reached 
relative position between the two parts of the assembly group before the bonding process is 
carried out (in this case the guide is above the stator and is not in contact with it). The term 
assembly uncertainty describes the relative position between the assembled parts, measured 
after the assembly process has been completed. This is the combination of the mean 
assembly deviation and the double standard deviation, too. 
Positioning marks are used as an inspection criterion. They are used for quality control of 
the parts before the process and during the process for the relative sensor guidance and 
evaluating the positioning uncertainty. After the process the positioning marks are used for 
evaluating the assembly uncertainty. During the process only one end of the assembled 
parts can be measured because the gripper covers half of the guide and the stator (see Fig. 12 
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right). Therefore, the 3D vision sensor observes only the visible sides of the assembled parts. 
This means that the measured positioning error and the resulting positioning uncertainty 
are only determined by the visible part side. After the process, both ends of the assembly 
group can be inspected and the overall assembly deviation can be measured. The assembly 
uncertainty is calculated from the deviations. This value is comprised of the overall errors 
during the assembly of the micro system. 
An assembly uncertainty of 38 µm and a positioning uncertainty of 0.82 µm are reached for 
the assembly process. The difference between assembly uncertainty and positioning 
uncertainty is a result of the relatively long part length of 10.66 mm. A small angular 
deviation causes a positioning error (in xy-direction). This error is larger at the side of the 
part which is invisible during the positioning process than the error on the visible side. With 
a greater part length, this positioning error will be higher than with smaller parts. 
Furthermore, deviations occurring during the bonding process cause an increased assembly 
error. Figure 14 shows the positioning uncertainty and figure 15 the assembly uncertainty of 
the assembled groups. The circles in the diagrams show the radius of the uncertainties. 
 

 
Fig. 14. Reached positioning uncertainty 

In another assembly task, assembly uncertainties of 25 µm were reached with another 
design of the assembly group. Therefore, the distance between the positioning marks has 
been enlarged. A positioning uncertainty and a limit value of 0.5 µm was reached with this 
arrangement of the positioning marks. This demonstrates the potential for further 
improvement of the assembly uncertainty. 
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Fig. 15. Reached assembly uncertainty 

4. Conclusion 
Micro assembly tasks demand low assembly uncertainties in the range of a few 
micrometers. This request results from the small part sizes in the production of MST 
components and the resulting small valid tolerances. Since precision robots represent the 
central component of an assembly system, an appropriate kinematic structure is crucial. 
These kinematic structures can be serial, parallel or hybrid (serial/parallel). Although serial 
structures can be used for micro assembly, they have large moved masses and need a 
massive construction of the frame and robot links to obtain an appropriate repeatability.  
Therefore, some size-adapted parallel and hybrid parallel robot structures were presented in 
the previous sections. Very good repeatabilities were reached with the presented robots due 
to the chosen structures, the miniaturized design and the use of flexure hinges as ultra-
precision machine components. 
Besides the precision robot, most assembly tasks require the use of additional sensors with 
high resolutions and measurement accuracies to reach a low assembly uncertainty. 
Therefore, optical and/or force sensors are used for sensor guided micro assembly 
processes.  
The terms “absolute sensor guidance” and “relative sensor guidance” were introduced. Both 
methods offer an enhancement of the accuracy within micro assembly processes. The 
“relative sensor guidance” promises a lower positioning and assembly uncertainty because 
of the user defined number of position correction loops. Therefore, relative sensor guidance 
was used in the presented example for micro assembly. 
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With the use of relative sensor guidance, positioning uncertainties below 0.5 µm can be 
reached. The assembly uncertainty has to be further improved to fulfil the demand for 
assembly uncertainties in the range of a few micrometers. Therefore, the design of the 
product and positioning marks as well as the gripping and joining technology has to be 
examined in future developments. 
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1. Introduction 
Hexapod is a new type of machine tool based on the parallel closed-chain kinematic 
structure. Compared to the conventional machine tool, parallel mechanism structure offers 
superior stiffness, lower mass and higher acceleration, resulting from the parallel structural 
arrangement of the motion systems. Moreover, hexapod has the potential to be highly 
modular and re-configurable, with other advantages including higher dexterity, simpler and 
fewer fixtures, and multi-mode manufacturing capabilities.  
Initially, hexapod was developed based on the Stewart platform, i.e. the prismatic type of 
parallel mechanism with the variable leg length. Commercial hexapods, such as VARIAX 
from Giddings & Lewis, Tornado from Hexel Corp., and Geodetic from Geodetic 
Technology Ltd., are all based on this structure. One of the disadvantages for the variable 
leg length structure is that the leg stiffness varies as the leg moves in and out. To overcome 
this problem, recently the constant leg length hexapod has been envisioned, for instance, 
HexaM from Toyada (Susuki et al., 1997). Hexaglibe form the Swiss Federal Institute of 
Techonology (Honegger et al., 1997), and Linapod form University of Stuttgart (Pritschow & 
Wurst, 1997). Between these two types, the fixed-length leg is stiffer (Tlusty et al., 1999) and, 
here, becoming popular. 
Dynamic modeling and analysis of the parallel mechanisms is an important part of hexapod 
design and control. Much work has been done in this area, resulting in a very rich literature 
(Fichter, 1986; Sugimoto, 1987; Do & Yang, 1988; Geng et al., 1992; Tsai, 2000; Hashimoto & 
Kimura, 1989; Fijany & Bejezy, 1991). However, the research work conducted so far on the 
inverse dynamics has been focused on the parallel mechanisms with extensible legs.  
In this chapter, first, in the inverse dynamics of the new type six d.o.f. hexapods with fixed-
length legs, shown in Fig. 1, is developed with consideration of the masses of the moving 
platform and the legs. (Xi & Sinatra, 2002) This system consists of a moving platform MP 
and six legs sliding along the guideways that are mounted on the support structure. Each 
leg is connected at one end to the guideway by a universal joint and at another end to the 
moving platform by a spherical joint. The natural orthogonal complement method (Angeles 
& Lee, 1988; Angeles & Lee, 1989) is applied, which provides an effective way of solving 
multi-body dynamics systems. This method has been applied to studying serial and parallel 
manipulators (Angeles & Ma, 1988; Zanganesh et al., 1997) automated vehicles (Saha & 
Angeles, 1991) and flexible mechanisms (Xi & Sinatra, 1997). In this development, the 
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Newton-Euler formulation is used to model the dynamics of each individual body, 
including the moving platform and the legs. All individual dynamics equations are then 
assembled to form the global dynamics equations. Based on the complete kinematics model 
developed, an explicit expression is derived for the natural orthogonal complement which 
effectively eliminates the constraint forces in the global dynamics equations. This leads to 
the inverse dynamics equations of hexapods that can be used to compute required actuator 
forces for given motions. 
 

 

Fig. 1. New hexapod design 

Finally, for completeness of the dynamic study of the parallel manipulator with the fixed-
length legs, the static balancing is studied (Xi et al., 2005).  
A great deal of work has been carried out and reported in the literature for the static 
balancing problem. For example, in the case of serial manipulator, Nathan (Nathan, 1985) 
and Hervé (Hervé, 1986) applied the counterweight for gravity compensations. Streit et al. 
(Streit & Gilmore, 1991), (Walsh et al., 19) proposed an approach to static balanced rotary 
bodies and two degrees of freedom of the revolute links using springs. Streit and Shin  
presented a general approach for the static balancing of planar linkages using springs(Streit 
& Shin, 1980). Ulrich and Kumar presented a method of passive mechanical gravity 
compensation using appropriate pulley profiles (Ulrich & Kumar, 1991). Kazerooni and Kim 
presented a method for statically-balanced direct drive arm (Kazerooni & Kim, 1990). 
For the parallel manipulator much work was done by Gosselin et al. Research reported in 
(Gosselin & Wang, 1998) was focused on the design of gravity-compensated of a six–degree-
of-freedom parallel manipulator with revolute joints. Each leg with two links is connected 
by an actuated revolute joint to the base platform and by a spherical joints the moving 
platform. Two methods are used, one approach using the counterweight and the other using 
springs. In the former method, if the centre of mass of a mechanism can be made stationary, 
the static balancing is obtained in any direction of the Cartesian space. In the second 
approach, if the total energy is kept constant, the mechanism is statically balanced only in 
the direction of gravity vector. The static balancing conditions are derived for the three-
degree-of-freedom spatial parallel manipulator (Wang & Gosselin, 1998) and in similar 
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conditions are obtained for spatial four-degree-of-freedom parallel manipulator using two 
common methods, namely, counterweights and springs (Wang & Gosselin, 2000). 
In this chapter, following the same approach presented by Gosselin, the static balancing of 
the six d.o.f. platform type parallel manipulator with the fixed-length legs shown is studied. 
The mechanism can be balanced using the counterweight with a smart design of 
pantograph. The mechanism can be balanced using the method, i.e., the counterweight with 
a smart design of pantograph. By this design a constant global center of mass for any 
configurations of the manipulator is obtained. 
Finally, the leg masses become important for hexapods operating at high speeds, such as 
high-speed machining; then in the future research and development the effect of leg inertia 
on hexapod dynamics considering high-speed applications will be investigated. 

2. Kinematic modeling  
2.1 Notation  
As shown in Figure 2, this hexapod system consists of a moving platform MP to which a 
tool is attached, and six legs sliding along the guideways that are mounted on the support 
structure including the base platform BP. Each leg is connected at one end to the guideway 
by a universal joint and at another end to the moving platform by a spherical joint. 
 

 

Fig. 2. Kinematic notation of the ith leg 

The coordinate systems used are a fixed coordinate system O-xyz is attached to the base and 
a local coordinate system Ot-xtytzt attached to the moving platform. Vector bi, si, and li are 
directed from O to Bi, from Bi to Ui, and from Ui to Si respectively. Bi indicates the position of 
one end of the ith guideway attached to the base, Ui indicates the position of the ith 
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universal joint, and Si indicates the position of the ith spherical joint. Six legs are numbered 
from 1 to 6.  
Furthermore, a local coordinate frame Oi-xiyizi is defined for each leg, with its origin located 
at the center of the ith universal joint. Two unit vectors are used. Unit vector l

iu is along the 

leg length representing the direction of the ith leg, and unit vector s
iu  is along the guideway 

representing the direction of the ith guideway. The orientation of the ith coordinate frame 
with respect to the base can therefore be defined by a 3 3× rotation matrix, for  i  = 1,…,6, as 

 a l a l
i i i i i⎡ ⎤= ×⎣ ⎦Q u u u u   (1) 

where  a
iu  is expressed as 

 ×
=

×

s l
a i i
i s l

i i

u uu
u u

  (2) 

Note that vector l
iu  is configuration-dependent and determined for the given location of the 

moving platform; vector s
iu is constant and defined by the geometry of the hexapod. 

For the purpose of carrying out the inverse dynamics analysis of the hexapod, the following 
symbols are defined. As shown in Figure 2, Ci is the center of mass of the ith leg, Cp is the 
center of mass of the moving platform, c, �

i

c and ��
i

c are the position, velocity and acceleration 
vectors, respectively, of Ci with respect to the fixed coordinate frame, ρ is the vector 
pointing from Ot to Cp with respect to the local coordinate frame Ot-xtytzt.  

2.2 Kinematics 
Consider one branch of the leg-guideway system, as shown in Figure 2, the following loop 
equation for i = 1,…,6, holds, 

 + − − − =i i i ih Rp b s l 0   (3) 

where h and R are the vector and rotation matrix that define the position and orientation of 
the moving platform relative to the base, respectively, ip is the vector representing the 
position of the ith spherical joint on the moving platform in the local coordinates.  
Since the leg always moves along the guideway, si can be expressed as 

 = s
i i iss u   (4) 

where is is a scalar representing the displacement of the ith actuator along the guideway. 
Likewise, leg vector il can be expressed as 

 = l
i i ill u   (5) 

where li is a scalar representing the fixed length of the ith leg. As mentioned in Section 2.1, 
the leg axis is parallel to the zi axis of the local coordinate frame Oi-xiyizi. In the light of 
eq.(1), l

iu  can be expressed as 
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 =l
i i iu Q z  (6) 

Substituting eqs.(4 & 5) into eq.(3) and rearranging it yields the following kinematics 
equations for the fixed-length leg hexapod, for i = 1,…,6, 

 = + − −s l
i i i i i is lu h Rp b u   (7) 

To obtain the velocity of the moving platform, taking the time derivative of eq. (7) yields 

 = + × − ×� ( ) ( )s
i i i i is u v ω Rp ω l   (8) 

where v and ω  are the vectors representing the velocity and angular velocity of the moving 
platform, respectively, and 

i

ω is the vector representing the angular velocity of the ith leg.  
Furthermore, by taking dot product on both sides of eq.(8) by li, it leads to 

 ⋅ = + × ⋅� [ ( )]s
i i i i is u l v ω Rp l   (9) 

It is well known that the kinematic analysis of parallel manipulator leads to two Jacobian 
matrices, namely, the forward and the inverse Jacobian (Gosselin & Angeles, 1990). To find 
the Jacobians for the hexapod under study, rearranging eq.(9) yields the following form 

 ( )⋅ = ×� [ , ( ) ]s T T
i i i i i i ps u l l Rp l t   (10) 

where [ ]= ,T T T

p

t v ω is the ×6 1  twist vector of the moving platform. Consider all six legs it 
leads to the following expression 

 =� pBs At   (11) 

where [ ]1 6,..., Ts s=s� � � is the ×6 1  vector of the actuator speeds, and A and B are the ×6 6  
matrices representing the inverse and forward Jacobian of the hexapod and they are defined 
as 

 
⎡ ⎤×
⎢ ⎥

= ⎢ ⎥
⎢ ⎥×⎣ ⎦

# #
1 1 1

6 6 6

( )

( )

T T

T T

l Rp l
A

l Rp l

  (12) 

 ( )1 1 6 6,...,s sdiag= ⋅ ⋅Β u l u l   (13) 

Eq.(11) defines the differential relationship between the actuator speeds �s and the twist of 
the moving platform tp. Rewriting eq.(11) gives  

 =� p ps J t   (14) 

Provided that B is invertible, the Jacobian matrix of the moving platform pJ can be given as 

 − ⎡ ⎤= = ⎣ ⎦
1

1 6,...,
TT T

p p pJ B A J J   (15) 
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where 

 
( )⎡ ⎤×

⎢ ⎥=
⎢ ⎥⎣ ⎦

,
TT

i ii
pi T s T s

i i i i

Rp llJ
l u l u

  (16) 

for i = 1,..,6. From eq.(14), tp can be expressed in terms of s� as, 

 = �p pt T s   (17) 

where 1
p p

−=T J . 
To obtain the acceleration of the moving platform, taking the time derivative of eq. (14) 
yields 

 = +� ��� p p p ps J t J t   (18) 

where [ ]=�� �� ��1 6,..., Ts ss is the ×6 1 vector of the actuator accelerations, ⎡ ⎤= ⎣ ⎦
� �,  T T T

pt a ω  is the 

time derivative of the twist of the moving platform, � pJ  is the time derivative of the Jacobian 
matrix of the moving platform obtained by differentiating pJ with respect to time, that is 

 − −= −� � �1 1( )pJ B A BB A   (19) 

where �A and �B given as 

 
⎡ ⎤× × × + × ×
⎢ ⎥

= ⎢ ⎥
⎢ ⎥× × × + × ×⎣ ⎦

� # #
1 1 1 1 1 1 1

6 6 6 6 6 6 6

( ) (( ) ( ))

( ) (( ) ( ))

T T

T T

ω l ω Rp l Rp ω l
A

ω l ω Rp l Rp ω l

  (20) 

 ( )= ⋅ × ⋅ ×�
1 1 1 6 6 6( ),..., ( )s sdiagB u ω l u ω l   (21) 

If the mass of the leg is uniformly distributed, then the center of mass is in its middle. The 
velocity of the center of mass can be given as 

 = + ×� �
2
i

i i i
lc s ω   (22) 

Upon differentiating eq.(22), the acceleration of the center of mass can be given as 

 = + × + × ×�� �� � ( )
2 2
i i

i i i i i
l lc s ω ω ω   (23) 

To obtain the leg angular velocity and acceleration, denote by Ei the ×3 3  cross-product 

matrix associated with vector l
iu , then eq.(9) may be re-written as  

           ⎡ ⎤= + × −⎣ ⎦�1 s
i i i i i

i
s

l
E ω v ω Rp u                    (24) 



Dynamics of Hexapods with Fixed-Length Legs 

 

251 

Consider all six legs, it forms a set of linear equations containing the unknowns of the leg 
angular velocity. There are three components of iω  for each leg. Because matrix iE  is a 
skew symmetric and singular, it is impossible to directly solve eq.(24). However, since the 
leg does not spin about its longitudinal axis, this indicates (Tsai, 2000) 

 ⋅ = 0i iω l   (25) 

In the light of eq.(25), eq. (24) may be rewritten as   

 i i i=A ω e   (26) 

where iA  is a ×4 3 matrix and ie  is a 4-dimensional vector, and they are defined as  

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

i
i T

i

E
A

l
  (27) 

 1
0

s
i i i

i
i

s
l

⎡ ⎤+ × −
= ⎢ ⎥

⎣ ⎦

v ω Rp ue
�

  (28)  

Solving eq. (26) leads to the expression for the leg angular velocity 

 ⎡ ⎤= × + × −⎣ ⎦�2
si

i i i i
i

s
l
lω v ω Rp u   (29) 

Now eq.(29) is substituted back into eq.(22), and the velocity becomes 

 ⎡ ⎤= + × −⎣ ⎦� �1
2

s
i i i isc v ω Rp u   (30) 

By examining eqs.(29 & 30), it may be noted that the two terms in the brackets are identical. 
The first term may be expressed as 

 + × = [ , ]i pi pv ω Rp 1 E t   (31) 

where piE  is the cross-product matrix of iRp . In the light of eq.(17), eq.(31) may be related 
to �s  as 

 = �1[ , ]pi p i1 E t T s   (32) 

where 1 is the 3 3× identity matrix and 1iT is the 3 6× matrix pertaining to the first term 
defined as 

 1 [ , ]i pi p=T 1 E T   (33) 

The second term in eqs.(29) and (30) can also be expressed in terms of �s  

 = �� 2
s

i i is u T s   (34) 
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where 2iT  is the 3 6× matrix pertaining to the second term defined as 

 =2 3 3[ ,..., ,..., ]s
i iT 0 u 0   (35) 

In eq.(35), 03 is the 3-dimensional null vector. The twist of the ith leg can be expressed in 
terms of �s  as 

 = �i it T s  (36) 

where ti is the twist of the ith leg, i.e. ⎡ ⎤= ⎣ ⎦� ,T T T
i i it c ω , and the 6 6× matrix Ti is given as 

 1 2,T T T
i i i⎡ ⎤= ⎣ ⎦T T T   (37) 

Furthermore, the leg angular acceleration can be obtained by differentiating eq.(26) with 
respect to time, that is  

 = − �� �ei i i i iA ω A ω   (38) 

where  

 
⎡ ⎤× ×

= ⎢ ⎥
⎣ ⎦

� ( )
0

l
i i i

i i
ω u ωA ω   (39) 

 ( )1
0

s
i i i i

i
i

s
l

⎡ ⎤+ × + × × −
= ⎢ ⎥

⎣ ⎦

a ω Rp ω ω Rp ue
� ���   (40) 

From eq.(38), vector � iω  representing the angular acceleration of the ith leg is given as 

 ( ) ( )2
1 ( ) a ( )s s

i i i i i i i i i i i
i

s s
l

⎡ ⎤= × × + × − + × + × + × × −⎣ ⎦ω ω l v ω Rp u l ω Rp ω ω Rp u� �� ��   (41) 

3. Dynamic modeling 
3.1 The natural orthogonal complement method  
Prior to performing dynamic modeling of the hexapod, a brief review of the natural 
orthogonal complement method (Angeles & Lee, 1988) is provided. Consider a system 
composed of p rigid bodies under holonomic constraints, the Newton-Euler equations for 
each individual body can be written, for i = 1,.., p, as  

 = − +�
i i i i i iM t W M t w   (42) 

where it is the twist of the ith body, ⎡ ⎤= ⎣ ⎦,T T T
i i iw n f  represent the wrench acting on the ith 

body, ni and fi are the resultant moment and the resultant force acting at the center of mass. 
In general wi can be decomposed into working wrench w

iw and non-working wrench N
iw . The 

former can further be decomposed as 
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 gw a d
i i ii= + +w w w w   (43) 

where ,  and  ga d
i iiw w w are the actuator, gravity and dissipate wrenches, respectively.  

In eq. (42), the 6 6×  angular velocity matrix Wi and the 6 6×  inertia matrix Mi are defined 
as 

 ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

i
i

Ω O
W

O O
, ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

i
i

im
I O

M
O 1

  (44) 

with 

 ∂ ×
=

∂
( )i

i
ω eΩ

e
  (45) 

where Ii is the 3 3×  matrix of the moment of inertia of the ith body, mi is the body mass, O 

denotes the 3 3×  null matrix, and e is an arbitrary vector. 
If consider all p bodies, the assembled system dynamics equations are given as 

  = − + +� W NMt WMt w w   (46) 

where the 6 6p p× generalized mass matrix M and generalized angular velocity matrix W 
are defined as  

 ≡ …1( , , ),pdiagM M M   (47) 

 ≡ …1( , , )pdiagW W W   (48) 

and the 6p-dimensional generalized twist t, generalized working wrench Ww  and 
generalized non-working wrench Nw are defined as 

 
1

p

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎣ ⎦

t
t

t
# , 

1
W

W

W
p

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w
w

w

# , 
1
N

N

N
p

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w
w

w

#   (49) 

It can be shown that the kinematic constraints hold the following relation with the 
generalized twist 

 = 6pKt 0   (50) 

where 6p0 is the 6p-dimensional null vector, K is the ×6 6p p  velocity constraint matrix with 

a rank of m which is equal to the number of independent holonomic constraints. The 
number of degrees of freedom of the system, i.e. independent variables, is determined as n = 
6p - m. Denote the independent variables by s, they can be related to the twist as 

 = �t Ts   (51) 
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 = + �� �� �t Ts Ts   (52) 

where T is a ×6p n  twist-mapping matrix.  
By substituting eq.(51) into eq.(50), the following relation can be obtained 

 = 6pKT 0   (53) 

where T is the natural orthogonal complement of K. As shown in (Angeles & Lee, 1988, 
1989) the non-working vector wN lies in the null space of the transpose of T. Thus, if both 
sides of eq. (46) are multiplied by TT, in the aid of eqs. (51 & 52), the system dynamics 
equations can be obtained as 

 + = + +�� � ( )gT a dIs Cs T w w w   (54) 

where the n n×  generalized inertia matrix I and coupling matrix C are defined as 

 T≡I T MT , ( )T≡ +C T MT WMT�   (55) 

Furthermore, by defining the following generalized forces 

 τ τ τ= = =, ,g ga T a T d T dT w T w T w ,     = +�� �Iτ Is Cs   (56) 

the inverse dynamics of the system can be given as  

 = − −ga I dτ τ τ τ   (57) 

where aτ is the vector representing the applied actuator forces. 

3.2 Inverse dynamics 
The key in applying the natural orthogonal complement method is to derive the expression 
for the twist-mapping matrix T, which relates the speeds of the independent variables to the 
generalized twist. For the hexapod under study, the independent variable s is the vector 
representing the actuator displacement, with the total number of six, as defined before. The 
generalized twist is expressed as 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
1

6

pc

t

t t
t

  (58) 

Note that t1 to t6 are the twists for the six legs. Since the twist in eq.(36) is defined at the 
center of mass of the leg, Ti represents the twist-mapping for the legs. For the moving 
platform, tpc is defined as the center of mass which may be expressed as 

 = +pc h Rρ   (59) 

Differentiating eq.(59) gives 
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 = + ×� pc v ω Rρ   (60) 

In the light of eq.(60), the following relation can be obtained 

 tpc = Hp tp  (61) 

where pH  is the 6 6× matrix defined as 

 ρ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
p

1 E
H

O 1
  (62) 

In eq.(62), Eρ is the cross-product matrix of Rρ . Note that when ρ  is zero, i.e. the center of 
mass coincides with the coordinate origin, Hp becomes an identity matrix, and tpc = tp. 
The twist-mapping matrix T for the hexapod under study can be given in the light of 
eqs.(17), (36) and (62) as 

 

1

6

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T T

H T

#
  (63) 

where T is a 42 6× matrix. With T, the generalized forces can be defined according to 
eq.(56), and the applied actuator forces can be determined according to eq.(57). 

4. Simulation 
4.1 Geometric and inertial parameters 
The geometry of the base and the moving platform is shown in Figure 3.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Geometry of the base and the moving platform 

Accordingly, the coordinates of vector bi with respect to the fixed frame are given as 
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where Lb and lb are the long and short side of the base hexagon, cos(30 )sc = D , and 

( /2 ) (30 )b b by L l tg= + D . Likewise, the coordinates of vector ip  with respect to the local 
frame are given as 
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(65a) 
(65b) 
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(65f) 
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(65i) 

 

where Lp and lp are the long and short side of the moving platform hexagon, and 
( /2 ) (30 )p p py L l tg= + D . The geometric parameters and inertial parameters are given in 

Tables 1 and 2, respectively. In Table 1, S is the guideway length, γ is the guideway angle 
between the guideway and the vertical direction, and l is the length of the leg. These three 
parameters are the same for all the guideways and legs. Parameters Lb, lb, Lp and lp are 
defined in Figure 3. In Table 2, m is the mass, and Ixx, Iyy and Izz are the moments of inertia.  
 

S 
Guideway 

length 

γ  
Guideway

angle 

l 
Leg length

Lb 
Long side BP

lb 
Short side BP

Lp 
Long side MP

lp 
Short side MP 

0.60 m 45o 0.50 m 1.00 m 0.09 m 0.50 m 0.09m 

Table 1. Geometric parameters 
 

 m (kg) Ixx = Iyy 
(kg⋅m2) Izz (kg⋅m2)

Platform 3.983 0.068 0.136 
Leg 0.398 0.0474 - 

Table 2. Inertial parameters 
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4.2 Numerical example 
A simulation program has been developed using Matlab based on the method described in 
the previous sections. In terms of computation, as can be seen from eq. (54), the inverse 
dynamics of the hexapods mainly involves the twist-mapping matrix T and its derivative, 
which could be computed numerically for each time interval. This way, it is computationally 
more efficient. To further speed up computation, parallel computation techniques could be 
used. As shown in Figure 4, the motion part including actuator speeds and accelerations 
could be computed in parallel to the inertia part including mass matrix I and coupling 
matrix C. Since the program is done in Matlab, parallel computation is not realized.  
However, this strategy can certinaly be applied to model-based control using the dynamic 
equations. 
In terms of singularity, as can be shown from eq. (63), the twist-mapping matrix T becomes 
degenerate when the moving platform Jacobian Jp (Tp = Jp-1) is singular. 
The movement of the moving platform is defined in terms of 3-4-5 polynomials that 
guarantee zero velocities and zero accelerations at the beginning and at the end. The 
selection of a smooth motion profile is very important for the hexapod as it is operated 
under high speeds. The conventional machine tools are run at a maximum velocity of 
30m/min with a maximum acceleration of 0.3 g. Hexapods can run at a maximum velocity 
of 100 m/min with a maximum acceleration over 1 g.  
The first simulation is for high speed, with a maximum velocity of 102 m/min. The second 
simulation is for low high speed with a maximum velocity of 30 m/min. In both cases, the 
hexapod moves a distance of 0.1m along the z axis. The initial position of the moving 
platform is at xo = 0, yo = 0 and zo = 0.7m. Figure 4 shows the velocity profiles of the moving 
platform. Figures 5, 6 and 7 show the displacements, velocities and accelerations of the six 
actuators, respectively. Figure 8 shows the computed actuator forces. The simulations show 
that high speed motions result in large actuator forces. 
 

 
 

a)   High speed (b) Low speed 

Fig. 4. Motion Profile of moving platform 
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(a) High speed (b) Low speed 

Fig. 5. Actuator displacements 

 
(a) High speed (b) Low speed 

Fig. 6. Actuator velocities 

 

(a) High speed (b) Low speed 

Fig. 7. Actuator accelerations 
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(a) High speed (b) Low speed 

Fig. 8. The computed actuator forces 

5. Static balancing of the hexapod 
The static and dynamic balancing is a classic problem in the theory of machines and 
mechanisms. In particular, when a mechanism is not statically balanced, the weight of 
linkage produces force or torque at actuators under static conditions and actuators have to 
contribute to support the weight of the moving links for any configurations. The problem 
becomes more serious for the parallel manipulator applied as flight simulator where the 
weight of the moving platform is very large with respect to the masses of the links. Static 
balancing also called gravity compensation is important. If the forces/toques exerted by joint 
actuators are reduced, the full potential of machine will be improved. 
In this paragraph, following the same approach presented by Gosselin, the static balancing 
of the hexapod with the fixed-length legs is studied.  

5.1 Static balancing using counterweight 
The static balancing of the parallel manipulator under study is investigated using 
counterweights. The base coordinate frame Oxyz frame, is fixed to the base with Z-axis 
pointing vertically upward and the moving coordinate frame O'x'y'z' is attached to the 
moving platform. The Cartesian coordinates used to describe the pose of the platform are as 
shown in Fig. 9 given by the position of O' with respect to the fixed frame and the 
orientation of the platform represented by the rotation matrix Q 

 
11 12 13

21 22 23

31 32 33

q q q
q q q
q q q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q   (66) 

Using the counterweights, static balancing is obtained if the global center mass of the 
mechanism is kept stationary at any values of the independent variables. To choose an 
suitable constant, namely 

 =Mr 0   (67) 
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Fig.9 Kinematic mode 

where r is the position vector of the global mass center, and M is: 

 
6

p i
i 1

M m m
=

= + ∑   (68) 

where pm  is the mass of the platform, im is the mass of the leg. The global centre of the 
mass of the manipulator is written as  

 
6

p p i i
i 1

M m m
=

= + ∑r r r   (69) 

where pr  is the platform center of the mass, ir is the leg center of the mass. From Fig. 9, 

vectors pr , ir can be derived, and substituted into eq.(69), yielding 

 ( ) ( ) ( )
6

gi
p i i i i i

ii 1

l
M m m

l=

⎡ ⎤
= + ⋅ + + ⋅ − + ⋅ − −⎢ ⎥

⎣ ⎦
∑r h Q g h Q p h Q p b s   (70) 

where g is the vector center of mass of the moving platform with respect to the frame 
O'x'y'z', h is the position of O' with respect to the fixed frame, pi is the position of the 
spherical joint with respect to the moving coordinate frame, bi is the position of the lower 
end of the guideway with respect to the fixed frame, li is the length of the leg, si can be 
written, for  i=1,…,6, as 

 ρ= ⋅ ˆi i is s   (71) 

where ˆ is  is the unit vector of guideway, ρi is the independent variable of the prismatic joint. 
In concise form, eq. (70) is expressed as 
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=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑

6
gi

1 p i
ii 1

l
A m m 1

l
  (73) 

 
=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑

6
gi

p i i
ii 1

l
m m 1

l
B g p   (74) 

 =5
gi

i i
i

l
A m

l
 , for i=1,..,6   (75) 

 
=

= ∑
6

5i i
i 1

A0A b   (76) 

The conditions for static balancing can be given for i=1,..,6, as follows: 

 = = = =5 00 , 0 , 0 , 01 iA AB A   (77) 

From conditions =5 0iA , i=1,..,6, one can obtain  

 = 0gil   (78) 

By condition = 01A , one can obtain 

 
6

p i
i 1

m m
=

=− ∑   (79) 

Eq.(79) shows that the balancing by counterweight is impossible. If it was substituted in the 
condition B= 0, 
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p i i
i 1

m m
=

+ =∑g p 0   (80) 

then one can obtain 
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i i
i 1
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m
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p
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From eq. (81), it shows that the manipulator could be balanced by a device that provide a 
force that is 
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1. equal to the weight of the links and the platform; 
2. in opposite direction of the weight. 

5.2 Static balancing wit a pantograph counterweight 
Since it is shown that the static balancing of the examined mechanism is impossible with the 
help of counterweights, we propose a method to add a pantograph connecting the moving 
platform O' to the fixed platform O, as shown in Fig. 10. The pantograph is a device that 
allows to keep two end points on the same line and keep their distance at the centre with a 
constant ratio. In this application it is possible to use a pantographs with two or more mesh 
as shown in Fig. 10 and Fig. 11, respectively. In both case the manipulator is balanced. The 
pantograph is fixed to the moving platform on the point O' by a spherical joint and fixed to 
the point O by an universal joint. The leg counterweight is shown in Fig.12. 
 

 

Fig. 10. Model with counterweights mass       Fig. 11. Balanced Hexapod using pantograph 
 

Fig. 12. Leg counterweight 

In this case, the mass M becomes, 

 ∗ ∗ ∗

= =

= + + + + +∑ ∑
6 6

p p a a i i
i 1 i 1

M m m m m m m   (82) 
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where pm  and ∗
pm  are the mass of the platform and the mass of the platform counterweight, 

im and ∗
im are the mass of the legs and the mass of the legs counterweights, am  and ∗

am are 
the mass of the pantograph and the mass of the of the pantograph counterweight. In this 
case, the global center of the mass of the manipulator is written as 

 
6 6

p p p p a a a a i i i i
i 1 i 1

M m m m m m m∗ ∗ ∗ ∗ ∗ ∗

= =

= + + + + +∑ ∑r r r r r r r   (83) 

 where pr and p
∗r are the platform center of the mass and the platform counterweight 

position, ir and i
∗r are the legs center of the mass and the legs counterweight position, 

ar and a
∗r are the pantograph center of the mass and the pantograph counterweight position. 

From Figs. 9-10, vectors pr , p
∗r , ar , a

∗r , ir and i
∗r can be derived and substituted into eq.(83), 

yielding 
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  (84) 

where, la is the center of mass of the pantograph with respect to the fixed frame, la* is the 
pantograph counterweight position with respect to the fixed frame, lgi is the length of the leg 
counterweight link, li is the length of the leg, si can be written, for i=1,...,6, as 

 ρ= ⋅ ˆi i is s   (85) 

In concise form, eq.(84) can be expressed as 
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The conditions for static balancing can be given, for i =1,..,6, as follows  

 = = = =5 00 , 0 , 0 , 01 iA AB A   (91) 

From conditions =5 0iA , for i=1,..,6, one can obtain  
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From eq. (92), for i=1,..,6, the following is obtained 
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By condition = 01A , i.e., 
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one can obtain 
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Finally, condition B= 0 leads to the following 
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Eq.(96) shows that the static balancing can be achieved by fixing the global center of the 
mass of the moving platform, that of the legs and their counterweights at the same position, 
O'. In order to obtain it, the platform counterweight should be placed  in the position: 
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Simulation is carried out to demonstrate the proposed method. The results are shown in 
Figs. 13-14, from which it can be seen that the centre of mass of the robot is non-stationary 
for non balanced case, while it is fixed for the balanced case.  
After static balancing the global mass of the device increases by  

 ∗ ∗ ∗

=

Δ = + + + ∑
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p a a i
i 1

M m m m m   (98) 
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The negative effect for the dynamic performance by the increasing global mass can be 
reduced by optimum design of the pantograph. A graph can be arranged to provide such 
help. Fig. 15 shows the ratios,  

 + ΔM M
M

, + *
i i

i

I I
I

, + *
a a

a

I I
I

,  (99) 

which vary respect to the ratio ra*/ h and  lgi*/ lgi and where Ii is the moment of inertia of the 
leg, Ii* is the moment of inertia of the leg counterweight whit respect of Pi, Ia is the moment 
of inertia of the moving platform and Ia* is the moment of inertia of the pantograph 
counterweight with respect of O. It should be noted that with a suitable design it is possible 
to reduce MΔ  at the same time, it may increase Ii and Ia. The effect of gravity compensation 
on the dynamic performances was studied in detail in (Xi, 1999). 
 

 

Fig. 13. Mobile center of mass Hexapod 
 

  

Fig. 14. Fixed center of mass of Balanced Hexapod 



 Parallel Manipulators, Towards New Applications 

 

266 

 
Figure 15. Graph for optimum design 
 

 Input  
Mobile platform   

mass [kg] short side [mm] long side [mm] 
8 200 800 

Fixed platform 1   

mass [kg] short side [mm] long side [mm] 

/ 100 400 
Fixed platform 2   

mass [kg] short side [mm] long side [mm] 
/ 250 1000 

leg   
mass [kg] li [mm] lgi [mm] 

0.5 750 375 
Pantograph   
mass [kg] side length [mm] ra [mm] 

3 100 0 
 Output  

ma* [kg] mi* [kg]  
17 1  

Table 3. Geometric and inertial parameters 
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7. Conclusion 
In this chapter, the inverse dynamics of hexapods with fixed-length legs is analyzed using 
the natural orthogonal complement method, with considering the mass of the moving 
platform and those of the legs. A complete kinematics model is developed, which leads to 
an explicit expression for the twist-mapping matrix. Based on that, the inverse dynamics 
equations are derived that can be used to compute the required applied actuator forces for 
the given movement of the moving platform. The developed method has been implemented 
and demonstrated by simulation. 
Successively, the static balancing of  hexapods is addressed. The expression of  the global 
center of mass is derived, based on which a set of static balancing equations has been 
obtained. It is shown that this type of parallel mechanism cannot be statically balanced by 
counterweights because prismatic joints do not have a fixed point to pivot as revolute joints. 
A new  design is proposed to connect the centre of the moving platform to that of the fixed 
platform by a pantograph. The conditions for static balancing are derived. This mechanism 
is able to release the actuated joints from the weight of the moving legs for any 
configurations of the robot. 
In the future research the leg inertia will be include for modeling the dynamics of the 
hexapod for high-speed applications.  
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1. Introduction 
Parallel manipulators are robotic devices that differ from the more traditional serial robotic 
manipulators by their kinematic structure. Parallel manipulators are composed of multiple 
closed kinematic loops. Typically, these kinematic loops are formed by two or more 
kinematic chains that connect a moving platform to a base, where one joint in the chain is 
actuated and the other joints are passive. This kinematic structure allows parallel 
manipulators to be driven by actuators positioned on or near the base of the manipulator. In 
contrast, serial manipulators do not have closed kinematic loops and are usually actuated at 
each joint along the serial linkage. Accordingly, the actuators that are located at each joint 
along the serial linkage can account for a significant portion of the loading experienced by 
the manipulator, whereas the links of a parallel manipulator generally need not carry the 
load of the actuators. This allows the parallel manipulator links to be made lighter than the 
links of an analogous serial manipulator. The most noticeable interesting features of parallel 
mechanisms being: 
• High payload capacity.  
• High throughput movements (high accelerations).  
• High mechanical rigidity.  
• Low moving mass. 
• Simple mechanical construction.  
• Actuators can be located on the base. 
However, the most noticeable disadvantages being: 
• They have smaller workspaces than serial manipulators of similar size.  
• Singularities within working volume. 
• High coupling between the moving kinematic chains. 

1.1 Prior work 
Among different types of parallel manipulators, the Gough-Stewart platform has attracted 
most attention because it has six degrees of freedom (DOF). It was originally designed by 
(Stewart, 1965). Generally, this manipulator has six limbs. Each one is connected to both the 
base and the moving platform by spherical joints located at each end of the limb.  
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Actuation of the platform is typically accomplished by changing the lengths of the limbs. 
Although these six-limbed manipulators offer good rigidity, simple inverse kinematics, and 
high payload capacity, their forward kinematics are difficult to solve, position and 
orientation of the moving platform are coupled and precise spherical joints are difficult to 
manufacture at low cost. 
To overcome the above shortcomings, parallel manipulators with fewer than six degrees of 
freedom have been investigated. For examples, (Ceccarelli, 1997) proposed a 3-DOF parallel 
manipulator (called CaPaMan) in which each limb is made up of a planar parallelogram, a 
prismatic joint, and a ball joint. But these manipulators have coupled motion between the 
position and orientation of the end-effector. The 3-RRR (Revolute Revolute Revolute) 
spherical manipulator was studied in detail by (Gosselin & Angeles, 1989).  
Several spatial parallel manipulators with a rotational moving platform, called rotational 
parallel manipulators (RPMs), were proposed (Di Gregorio, 2001), (Karouia & Herve, 2000) 
and (Vischer & Clavel, 2000). (Clavel, 1988) at the Swiss Federal Institute of Technology 
designed a 3-DOF parallel manipulator that does not suffer from the first two of the listed 
disadvantages of the Stewart manipulator. Closed-form solutions for both the inverse and 
forward kinematics were developed for the DELTA robot (Gosselin & Angeles, 1989). The 
DELTA robot has only translational degrees of freedom. Additionally, the position and 
orientation of the moving platform are uncoupled in the DELTA design. However, the 
DELTA robot construction does employ spherical joints. (Tsai, 1996) presented the design of 
a spatial 3-UPU (Universal Prismatic Universal) manipulator and pointed out the conditions 
that lead to pure translational motion and its kinematics was studied further by (Di-
Gregorio & Parenti-Castelli, 1998). (Tsai, 1996) and (Tsai et al., 1996) designed a 3-DOF TPM 
(Translational Parallel Manipulator) that employs only revolute joints and planar 
parallelograms. (Tsai & Joshi, 2002) analyzed the kinematics of four TPMs for use in hybrid 
kinematic machines. (Carricato & Parenti-Castelli, 2001) developed a family of 3-DOF TPMs. 
(Fang & Tsai, 2002) presented a systematic methodology for structure synthesis 3-DOF 
TPMs using the theory of reciprocal screws (Kim  & Tsai, 2002). 
Han Sung Kim and Lung-Wen Tsai (Kim & Tsai, 2002) presented a parallel manipulator 
called CPM (figure 1) that employs only revolute and prismatic joints to achieve 
translational motion of the moving platform. They described its kinematic architecture and 
discussed two actuation methods. For the rotary actuation method, the inverse kinematics 
provides two solutions per limb, and the forward kinematics leads to an eighth-degree 
polynomial. Also, the rotary actuation method results in many singular points within the 
workspace. On the other hand, for the linear actuation method, there exists a one-to-one 
correspondence between the input and output displacements of the manipulator. Also, they 
discussed the effect of misalignment of the linear actuators on the motion of the moving 
platform. They suggested a method to maximize the stiffness to minimize the deflection at 
the joints caused by the bending moment because each limb structure is exposed to a 
bending moment induced by the external force exerted on the end-effector. 

2. Manipulator description and kinematics 
2.1 Manipulator structure 
The Cartesian Parallel Manipulator, shown in figure 1, consists of a moving platform that is 
connected to a fixed base by three limbs. Each limb is made up of one prismatic and three 
revolute joints and all joint axes are parallel to one another.  
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Figure 1: Assembly drawing of the prototype parallel manipulator. 

2.2 Kinematic structure 
The kinematic structure of the CPM is shown in figure 2 where a moving platform is 
connected to a fixed base by three PRRR (Prismatic Revolute Revolute Revolute) limbs. The 
origin of the fixed coordinate frame is located at point O and a reference frame XYZ is 
attached to the fixed base at this point. The moving platform is symbolically represented by 
a square whose length side is 2L defined by B1, B2, and B3 and the fixed base is defined by 
three guide rods passing through A1, A2, and A3, respectively. The three revolute joint axes 
in each limb are located at points Ai, Mi, and Bi, respectively, and are parallel to the ground-
connected prismatic joint axis. Furthermore, the three prismatic joint axes, passing through 
point Ai, for i = 1, 2, and 3, are parallel to the X, Y, and Z axes, respectively. Specifically, the 
first prismatic joint axis lies on the X-axis; the second prismatic joint axis lies on the Y axis; 
and the third prismatic joint axis is parallel to the Z axis. Point P represents the center of the 
moving platform. The link lengths are L1, and L2. The starting point of a prismatic joint is 
defined by d0i and the sliding distance is defined by di - d0i for i = 1, 2, and 3.  

2.3 Kinematics constraints 
For this analysis, the position of the end-effector is considered known, and is given by the 
position vector P= [x, y, z] which defines the location of P at the center of the moving 
platform in the XYZ coordinate frame. The inverse kinematics analysis produces a set of two 
joint angles for each limb (θi1 and θi2 for the ith limb) that define the possible postures for 
each limb for the given position of the moving platform. 
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Figure 2: Spatial 3-PRRR parallel manipulator. 

2.3.1 The first limb 
A schematic diagram of the first limb of the CPM is sketched in figure 3, and then the 
relationships for the first limb are written for the position P[x, y, z] in the coordinate frame 
XYZ. 

 
Figure 3: Description of the joint angles and link lengths for the first limb. 

   y= L1 cos θ11+L2 cos θ12+L    (1) 

 z= L1 sin θ11+L2 sin θ12  (2) 

 2 2 2
2 1 11 1 11( cos ) ( sin )L y L L z Lθ θ= − − + −   (3) 
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2.3.2 The second limb 
A schematic diagram of the second limb of the CPM is sketched in figure 4, and then the 
relationships for the second limb are written for the position P[x, y, z] in the coordinate 
frame XYZ. 

 z= L1 cos θ21+L2 cos θ22  (4)  

 
1 21 2 22sin sinx L L Lθ θ= + +   (5) 

 2 2 2
2 1 21 1 21( cos ) ( sin )L z L x L Lθ θ= − + − −   (6) 

 

 
Figure 4: Description of the joint angles and link for the second limb. 

2.3.3 The third limb 
A schematic diagram of the third limb of the CPM is sketched in figure 5, and then the 
relationships for the third limb are written for the position P[x, y, z] in the coordinate frame 
XYZ. 
 

 
Figure 5: Description of the joint angles and link lengths for the third limb. 
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 x= L1 cos θ31+L2 cos θ32  (7) 

 
1 31 2 32sin siny D L L Lθ θ= − − −   (8) 

 2 2 2
2 1 31 1 31( cos ) ( sin )L x L y D L Lθ θ= − + − + +   (9) 

2.4 Linear actuation method  
As described by Han Sung Kim and Lung-Wen Tsai (Kim & Tsai, 2002), for the linear 
actuation method, a linear actuator drives the prismatic joint in each limb whereas all the 
other joints are passive. This method has the advantage of having all actuators installed on 
the fixed base. The forward and inverse kinematic analyses are trivial since there exists a 
one-to-one correspondence between the end-effector position and the input joint 
displacements. Referring to figure 2, each limb constrains point P to lie on a plane which 
passes through point Ai and is perpendicular to the axis of the linear actuator. Consequently, 
the location of P is determined by the intersection of three planes. A simple kinematic 
relation can be written as  

 
1

2

3

x d
y d
z d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    (10) 

3. Analysis of manipulator dynamics 
An understanding of the manipulator dynamics is important from several different 
perspectives. First, it is necessary to properly size the actuators and other manipulator 
components. Without a model of the manipulator dynamics, it becomes difficult to predict 
the actuator force requirements and in turn equally difficult to properly select the actuators. 
Second, a dynamics model is useful for developing a control scheme. With an 
understanding of the manipulator dynamics, it is possible to design a controller with better 
performance characteristics than would typically be found using heuristic methods after the 
manipulator has been constructed. Moreover, some control schemes such as the computed 
torque controller rely directly on the dynamics model to predict the desired actuator force to 
be used in a feedforward manner. Third, a dynamical model can be used for computer 
simulation of a robotic system. By examining the behavior of the model under various 
operating conditions, it is possible to predict how a robotic system will behave when it is 
built. Various manufacturing automation tasks can be examined without the need of a real 
system. Several approaches have been used to characterize the dynamics of parallel 
manipulators. The most common approaches are based upon application of the Newton-
Euler formulations, and Lagrange’s equations of motion (Tsai, 1999). The traditional 
Newton-Euler formulation requires the equations of motion to be written once for each 
body of a manipulator, which inevitably leads to a large number of equations and results in 
poor computational efficiency. The Lagrangian formulation eliminates all of the unwanted 
reaction forces and moments at the outset. It is more efficient than the Newton-Euler 
formulation. However, because of the numerous constraints imposed by the closed loops of 
a manipulator, deriving explicit equations of motion in terms of a set of independent 
generalized coordinates becomes a prohibitive task. To simplify the problem, additional 
coordinates along with a set of Lagrangian multipliers are often introduced (Tsai, 1999). 



Cartesian Parallel Manipulator Modeling, Control and Simulation 

 

275 

3.1 Lagrange based dynamic analysis 
It can be assumed that the first rod of each limb is a uniform and its mass is m1. The mass of 
second rod of each limb is evenly divided between and concentrated at joints Mi and Bi. This 
assumption can be made without significantly compromising the accuracy of the model 
since the concentrated mass model of the connecting rods does capture some of the 
dynamics of the rods. Also, the damping at the actuator is disregarded since the Lagrangian 
model does not readily accommodate viscous damping as is assumed for the actuators.  
The Lagrangian equations are written in terms of a set of redundant coordinates. Therefore, 
the formulation requires a set of constraint equations derived from the kinematics of a 
mechanism. These constraint equations and their derivatives must be adjoined to the 
equations of motion to produce a number of equations that is equal to the number of 
unknowns. In general, the Lagrange multiplier approach involves solving the following 
system of equations (Tsai, 1999): 

 
1

( ) ( )
k

i
j i

ij j j

fd L L Q
dt q q q

λ
=

∂∂ ∂
− = +

∂ ∂ ∂∑     (11) 

For j =1 to n, where 
j : is the generalized coordinate index, 
n: is the number of generalized coordinates, 
i : is the constraint index, 
qj: is the jth generalized coordinate, 
k : is the number of constraint functions, 
L : is the Lagrange function, where L= T− V, 
T : is the total kinetic energy of the manipulator, 
V : is the total potential energy of the manipulator, 
fi : is a constraint equation,  
Qj : is a generalized external force, and 

iλ : is the Lagrange multiplier. 
Theoretically, the dynamic analysis can be accomplished by using just three generalized 
coordinates since this is a 3 DOF manipulator. However, this would lead to a cumbersome 
expression for the Lagrange function, due to the complex kinematics of the manipulator. So 
we choose three redundant coordinates which are θ11, θ21 and θ31 beside the generalized 
coordinates x, y, and z. Thus we have θ11, θ21, θ31, , x, y, and z as the generalized coordinates. 
Equation 11 represents a system of six equations in six variables, where the six variables are 

iλ  for i = 1, 2, and 3, and the three actuator forces, Qj for j = 4, 5, and 6. The external 
generalized forces, Qj for j=1, 2, and 3, are zero since the revolute joints are passive. This 
formulation requires three constraint equations, fi for i = 1, 2, and 3, that are written in terms 
of the generalized coordinates. 

3.2 Derivation of the manipulator‘s dynamics  
3.2.1 The kinetic and potential energy of the first limb 
Referring to figure 6, the velocities of A1 (the prismatic joint of the first limb), A2 and A3 are 
x , y and z . The angular velocity of the rod A1 M1 is 11θ . We can consider the moment of 
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inertia of rods A1 M1, A2 M2, and A3 M3 is 21
112

mI L= . m3 is the mass of each prismatic joint 

(A1, A2, and A3). So, the total kinetic energy of the first limb, T1, is 

 2
2 2 22 1 2

1 1 2 3 1
2[ ] ( ) ( ) 112 4 6 4

m m mxT m m m y z L θ= + + + + + +    (12) 

The total potential energy of the first limb, V1,is 

 1 2 2
1 1 11sin

2 2
m m mV gL gzθ+

= − −   (13) 

 

 
Figure 6: Schematic diagram of the first limb for the dynamic analysis. 

3.2.2 The kinetic and potential energy of the second limb 
Referring to figure 7, if the angular velocity of the rod A2 M2 is 21θ , the total kinetic energy of 
the second limb, T2 is 

 
2

2 2 22 1 2
2 1 2 3 1

2[ ] ( ) ( ) 212 4 6 4
m m myT m m m x z L θ= + + + + + +   (14) 

 

 
Figure 7: Schematic diagram of the second limb for the dynamic analysis. 
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The total potential energy of the second limb, V2, is given by 

 1 2 2
2 1 21cos

2 2
m m mV gL gzθ+

= − −   (15) 

3.2.3 The kinetic and potential energy of the third limb 
Referring to figure 8, the total kinetic energy of the second limb, T3 is  

 2
2 2 22 1 2

3 1 2 3 1
2[ ] ( ) ( ) 312 4 6 4

m m mzT m m m x y L θ= + + + + + +   (16) 

The total potential energy of the third limb, V3, is 

 3 1 2 3( )V m m m gz= − + +   (17) 

 

 
Figure 8: Schematic diagram of the third limb for the dynamic analysis. 

3.2.4 Derivation of the Lagrange equation 
From equations 12, 14, and 16, the total kinetic energy of the manipulator T is given by: 

 2 2 2 21 2
1 2 3 4 1

1 2 2 2[ 2 ]( ) ( ) ( )11 21 312 6 4
m mT m m m m x y z L θ θ θ= + + + + + + + + +   (18) 

where m4 is the mass of the tool. From equations 13, 15, and 17, the total potential energy V 
of the manipulator is calculated relative to the plane of the stationary platform of the 
manipulator, and is found to be: 

 1 2
1 11 21 1 2 3 4(sin cos ) ( 2 )

2
m mV gL m m m m gzθ θ+

= − + − + + +   (19) 

The Lagrange function is defined as the difference between the total kinetic energy, T, and 
the total potential energy V:  L= T− V 

 2 2 2
11 21

2 2 2( ) ( ) (sin cos )11 21 31L A x y z B C Ezθ θ θ θ θ= + + + + + + + +   (20) 
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Where: 

1 2 3 4
1 [ 2 ]
2

A m m m m= + + +  , 21 2
1( )

6 4
m mB L= + , 1 2

12
m mC gL+

=   and 
1 2 3 4( 2 )E m m m m g= + + +  

3.2.5 The constraint equations  
Differentiation of equation 3 with respect to time yields 

   1 11 1 11
11

11 11 1 11 11 1

( cos ) ( sin )0
(( )sin cos ) (( )sin cos )

y L L z Ly z
y L z L y L z L

θ θ θ
θ θ θ θ

− − −
= + +

− − − −
  (27) 

Differentiation of equation 6 with respect to time yields  

 1 21 1 21
21

1 21 21 1 21 21

( cos ) ( sin )0
( sin ( )cos ) ( sin ( )cos )

z L x L Lz x
L z L x L z L x

θ θ θ
θ θ θ θ
− − −

= + +
+ − + −

  (28) 

Differentiation of equation 9 with respect to time yields  

 1 31 1 31
31

31 31 1 31 31 1

( cos ) ( sin )0
( sin cos ( )) ( sin cos ( ))

x L y D L Lx y
x y D L L x y D L L

θ θ θ
θ θ θ θ

− − + +
= + +

+ − + + − +
  (29) 

The equations 27, 28, and 29 are rearranged so as to produce:  

 
11

21

31

x
y
z

θ
θ
θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Γ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

  (30) 

Where 

 
1 11 1 11

11 11 1 11 11 1

1 21 1 21

1 21 21 1 21 21

1 31 1 31

31 31 1

( cos ) ( sin )0
(( )sin cos ) (( )sin cos )

( sin ) ( cos )0
( sin ( )cos ) ( sin ( )cos )

( cos ) ( sin
( sin cos ( ))

y L L z L
y L z L y L z L

x L L z L
L z L x L z L x

x L y D L
x y D L L

θ θ
θ θ θ θ

θ θ
θ θ θ θ

θ θ
θ θ

− − −
− − − −

− − −
Γ = −

+ − + −
− − + +

+ − + 31 31 1

) 0
( sin cos ( ))

L
x y D L Lθ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

 

3.2.6 Taking the derivatives of the Lagrange function with respect to θ11 

11
11

( ) 2d L B
dt

θ
θ
∂

=
∂

, 
11

11

cosL C θ
θ
∂

=
∂

 

3

1
111 11 11

( ) ( )i
i

i

fd L L Q
dt

λ
θ θ θ=

∂∂ ∂
− = +

∂ ∂ ∂∑  

 (Q1, Q2 and Q3 =0 since the revolute joints are passive) 

 11 11 12 cosB Cθ θ λ− =   (31) 
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3.2.7 Taking the derivatives of the Lagrange function with respect to θ21 

21
21

( ) 2d L B
dt

θ
θ
∂

=
∂

, 
21

21

sinL C θ
θ
∂

= −
∂

 

3

2
121 21 21

( ) ( )i
i

i

fd L L Q
dt

λ
θ θ θ=

∂∂ ∂
− = +

∂ ∂ ∂∑  

 21 21 22 sinB Cθ θ λ+ =   (32) 

3.2.8 Taking the derivatives of the Lagrange function with respect to θ31 

31
31

( ) 2d L B
dt

θ
θ
∂

=
∂

, 
31

0L
θ
∂

=
∂

 

3

3
131 31 31

( ) ( )i
i

i

fd L L Q
dt

λ
θ θ θ=

∂∂ ∂
− = +

∂ ∂ ∂∑   

 31 32Bθ λ=   (33) 

Rearrangement of equations 31, 32, and 33 produces: 

 
11 11 1

21 21 2

31 3

cos
2 sin

0
B C
θ θ λ
θ θ λ
θ λ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

   (34) 

Differentiation equation 30 with respect to time yields  

11

21

31

x x
dy y
dt

z z

θ
θ
θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Γ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

Substituting into equation 34 yields 

 1 11

2 21

3

cos
2 2 sin

0

x x
dB y B y C
dt

z z

λ θ
λ θ
λ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Γ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (35) 

3.2.9 Taking the derivatives of the Lagrange function with respect to X 

( ) 2d L Ax
dt x

∂
=

∂
, 0L

x
∂

=
∂

 

3

4
1

( ) ( )i
i

i

fd L L Q
dt x x x

λ
=

∂∂ ∂
− = +

∂ ∂ ∂∑  
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11 1 21 2 31 32 xAx F λ λ λ− Γ − Γ − Γ=   (36) 

where Fx , Fx and Fx are the forces applied by the actuator for the first, second and third  
limbs. ijΓ is the (i, j) element of the Γ  matrix. 

3.2.10 Taking the derivatives of the Lagrange function with respect to Y 

( ) 2d L Ay
dt y

∂
=

∂
, 0L

y
∂

=
∂

 

3

5
1

( ) ( )i
i

i

fd L L Q
dt y y y

λ
=

∂∂ ∂
− = +

∂ ∂ ∂∑  

 
12 1 22 2 32 32 yAy F λ λ λ− Γ − Γ − Γ=   (37) 

3.2.11 Taking the derivatives of the Lagrange function with respect to Z 

 ( ) 2d L Az
dt z

∂
=

∂
, L E

z
∂

=
∂

 

            
3

6
1

( ) ( )i
i

i

fd L L Q
dt z z z

λ
=

∂∂ ∂
− = +

∂ ∂ ∂∑  

 13 1 23 2 33 32 zAz E F λ λ λ− −Γ −Γ −Γ=   (38) 

Rearrangement of equations 36, 37, and 38 produces:  

1

2

3

0
2 0

x
T

y

z

F x
F A y
F z E

λ
λ
λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Substituting into equation 35 yields 

11

21

0 cos
0 sin (2 2 ) 2

0

x
T T T

y

z

F x x
dF C AI B y B y
dt

F E z z

θ
θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + Γ + Γ Γ Γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
 

The dynamic equation of the whole system can be written as 

 ( ) ( , ) ( )F M q q G q q q K q= + +    (39) 

Where  

x

y

z

F
F F

F

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, x
q y

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, x
q y

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, x
q y

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, ( ) 2 2TM q AI B= Γ Γ+  , ( , ) 2T dG q q B
dt
Γ

= Γ  , and 
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11

21

0 cos
( ) 0 sin

0

TK q C
E

θ
θ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + Γ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where q is the 3×1 vector of joint displacements, q is the 3×1 vector of joint velocities, F is the 
3×1 vector of applied force inputs, M(q) is the manipulator inertia matrix, ( , )G q q  is the 
manipulator centripetal and coriolis matrix which is the 3×3 matrix of centripetal and 
coriolis forces, and K(q) is the vector of gravitational forces which is the 3×1 vector of 
gravitational forces due to gravity. The Lagrangian dynamics equation, equation 39, possess 
important properties that facilities analysis and control system design. Among theses are 
(Lewis et al., 1993): the M(q) is a 3×3 symmetric and positive definite matrix and the matrix 

( , ) ( ) 2 ( , )W q q M q G q q= −  is a skew symmetric matrix. 

4. Controller design 
4.1 Introduction  
The control problem for robot manipulators is the problem of determining the time history 
of joint inputs required to cause the end-effector to execute a commanded motion. The joint 
inputs may be joint forces or torques depending on the model used for controller design.  
Position control and trajectory tracking are the most common tasks for robot manipulators; 
given a desired trajectory, the joint force is chosen so that the manipulator follows that 
trajectory. The control strategy should be robust with respect to initial condition errors, 
sensor noise, and modeling errors.  The primary goal of motion control in joint space is to 
make the robot joints q track a given time varying desired joint position qd. Rigorously, we 
say that the motion control objective in joint space is achieved provided that lim ( ) 0

t
e t

→∞
=  

where e(t)=qd(t) - q(t) denotes the joint position error. Although the dynamics of the 
manipulator‘s equation is complicated, it nevertheless is an idealization, and there are a 
number of dynamic effects that are not included in this equation. For example, friction at the 
joints is not accounted for in this equation and may be significant for some manipulators. 
Also, no physical body is completely rigid. A more detailed analysis of robot dynamics 
would include various sources of flexibility, such as elastic deformation of bearings and 
gears, deflection of the links under load, and vibrations. 

4.2 PID control versus model based control 
The PID controller is a single-input/single-output (SISO) controller that produces a control 
signal that is a sum of three terms. The first term is proportional (P) to the positioning error, 
the second term is proportional to the integral (I) of the error, and the third is proportional 
to the derivative (D) of the error. The PID (or PD) type is usually employed in industrial 
robot manipulators because it is easy to implement and requires little computation time 
during real time operation. This approach views each actuator of the manipulator 
independently, and essentially ignores the highly coupled and nonlinear nature of the 
manipulator. The error between the actual and desired joint position is used as feedback to 
control the actuator associated with each joint. However, independent joint controllers can 
not achieve a satisfactory performance due to their inherent low rejection of disturbances 
and parameter variations. Because of such limitation, model based control algorithms were 
proposed (Sciavicco et al., 1990) that have the potential to perform better than independent 
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joint controllers that do not account for manipulator dynamics. However, the difficulty with 
the model based controller is that it requires a good model of the manipulator inverse 
dynamics and good estimates of the model parameters, making this controller more 
complex and difficult to implement than the non-model based controller. The model based 
control scheme was intensively experimentally tested for example the experimental 
evaluation of computed torque control was presented in (Griffiths et al., 1989). 

4.3 PD control with position and velocity reference 
The first PD control law is based on the position and velocity error of each actuator in the 
joint space. To implement the joint control architecture, the values for the joint position error 
and the joint rate error of the closed chain system are used to compute the joint control force 
F (Spong & Vidyasagar, 1989). 

 P DF K e K e= +   (40) 

Where 
de q q= − , which is the vector of position error of the individual actuated joints, and 

de q q= − , which is the vector of velocity error of the individual actuated joints. Where 

dq and 
dq are the desired joint velocities and positions, and KD and KP are 3 ×3 diagonal 

matrices of velocity and position gains. Although this type of controller is suitable for real 
time control since it has very few computations compared to the complicated nonlinear 
dynamic equations, there are a few downsides to this controller. It needs high update rate to 
achieve reasonable accuracy. Using local PD feedback law at each joint independently does 
not consider the couplings of dynamics between robot links. As a result, this controller can 
cause the motor to overwork compared to other controllers presented next. 

4.4 PD Control with gravity compensation 
This is a slightly more sophisticated version of PD control with a gravitational feedforward 
term. Consider the case when a constant equilibrium posture is assigned for the system as 
the reference input vector qd. It is desired to find the structure of the controller which 
ensures global asymptotic stability of the above posture. The control law F is given by 
(Spong & Vidyasagar, 1989): 

 ( )P D dF K e K e K q= + +   (41) 

It has been shown (Spong, 1996) that the system is asymptotically stable but it is only 
proven with constant reference trajectories. Although with varying desired trajectories, this 
type of controller cannot guarantee perfect tracking performance. Hence, more dynamic 
modeling information is needed to incorporate into the controller. 

4.5 PD control with full dynamics feedforward terms  
This type of controller augments the basic PD controller by compensating for the 
manipulator dynamics in the feedforward way. It assumes the full knowledge of the robot 
parameters. The key idea for this type of controller is that if the full dynamics is correct, the 
resulting force generated by the controller will also be perfect. The controller is given by 
(Gullayanon , 2005) 

 ( ) ( , ) ( )d d d d d d P DF M q q G q q q K q K e K e= + + + +   (42) 
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If the dynamic knowledge of the manipulator is accurate, and the position and velocity error 
terms are initially zero, the applied force ( ) ( , ) ( )d d d d d dF M q q G q q q K q= + +  
is sufficient to maintain zero tracking error during motion. This controller is very similar to 
the computed torque controller, which is presented next. The difference between these two 
controllers is the location of the position and velocity correction terms. This controller is less 
sensitive to any mass changes in the system. For example, if the robot picks up a heavy load 
in the middle of its operation, this controller is likely to respond to this change slower 
compared to computed torque controller. The advantage of this controller is that once the 
desired trajectory for a given task has been specified, then the feedforward terms relying on 
the robot dynamics ( ) ( , ) ( )d d d d d dM q q G q q q K q+ + can be computed offline to reduce the 
computational burden. 

4.6 Computed torque control 
This controller is developed for the manipulator to examine if it is possible to improve the 
performance of the trajectory tracking of the manipulator by utilizing a more complete 
understanding of the manipulator dynamics in the controller design. This controller 
employs a computed torque control approach, and it uses a model of the manipulator 
dynamics to estimate the actuator forces that will result in the desired trajectory. Since this 
type of controller takes into account the nonlinear and coupled nature of the manipulator, 
the potential performance of this type of controller should be quite good. The disadvantage 
of this approach is that it requires a reasonably accurate and computationally efficient 
model of the inverse dynamics of the manipulator to function as a real time controller. The 
controller computes the dynamics online, using the sampled joint position and velocity data. 
The key idea is to find an input vector, F, as a function of the system states, which is capable 
to realize an input/output relationship of linear type. It is desired to perform not a local 
linearization but a global linearization of system dynamics obtained by means of a nonlinear 
state feedback. Using the computed torque approach with a proportional-derivative (PD) 
outer control loop, the applied actuator forces are calculated at each time step using the 
following force law as described by Lewis, 1993: 

 ( )[ ] ( , ) ( )d D pF M q q K e K e G q q q K q= + + + +   (43) 

where F is the force applied to input links, KD is the diagonal matrix of the derivative gains, 
KP is the diagonal matrix of the proportional gains, and e is the vector of the position errors 
of the input links, de q q= − . To show that the computed torque control scheme linearizes 
the controlled system, the force computed by equation 43 is substituted into equation 39, 
yielding: ( ) ( ) ( )[ ]d D pM q q M q q M q K e K e= + + . Then multiplying each term by M-1(q), and 

substituting the relationship,
de q q= − , provides the following linear relationship for the 

error: 

 0D Pe k e k e+ + =   (44) 

This relationship can be used to select the gains to give the desired nature of the closed loop 
error response since the solution of equation 44 provides a second order damped system 
with a natural frequency of nω , and a damping ratio of  ζ where: 
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n PKω = ,      

2
D

P

K
K

ζ =   (45) 

Since the equation 44 is linear, it is easy to choose KD and KP so that the overall system is 
stable and e → 0 exponentially as t→∞. Usually, if KD and KP are positive diagonal matrices, 
the control law 43 applied to the system 39 results in exponentially trajectory tracking.  
It is customary in robot applications to take the damping ration 1ζ =  so that the response is 
critically damped. This produces the fastest non-oscillatory response. The natural frequency 

nω determines the speed of the response. So, the values for the gain matrices KD and KP are 
determined by setting the gains to maintain the following relationship:  

 2D PK K=    (46)  

If the error response is critically damped. Hence, the general solution of equation 44 is: 

 2
1 2( ) ( )

DK t
e t c c t e

−
= +   (47) 

where C1 and C2 are constants. 

5. Trajectory planning and simulation 
5.1 Introduction 
The computer simulation is the first step to verify the performance of the controllers because 
it is an ideal way of comparing performance of various motion controllers. Although 
computer simulation has much fewer disturbances compared to real experiments, factors 
such as the integration estimation and sampling rate can cause the controllers to behave 
differently than the mathematical prediction.  

5.2 Tracking accuracy 
In this research, the main purpose for developing the motion controllers is to obtain a good 
trajectory tracking capability. The performance of each control method is evaluated by 
comparing the tracking accuracy of the end-effector. The tracking accuracy is evaluated by 
the Root Square Mean Error (RSME). The end-effector error is defined as  

 2 2 2( )xyz x y zE e e e= + +   (48) 

where ex, ey and ez are the position errors in x-, y-, and z-axis given in manipulator’s 
workspace coordinates.  

 2
xyzE

RSME
n

= ∑   (49) 

Where n is the number of the samples.  

5.3 Trajectory planning 
In controlling the manipulator using any types of joint space controllers, any sudden 
changes in desired joint angle, velocity, or acceleration can result in sudden changes of the 
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commanded force. This can result in damages of the motors and the manipulator. Here, the 
manipulator is given a task to move along careful preplanned trajectories without any 
external disturbances or no interaction with environment. The desired trajectory is 
simulated using all motion controllers presented in Section 4 and the tracking accuracy 
RSME is obtained to be compared. The simulation is used to find a set of minimum 
proportional gain KP and derivative gain KD that minimized RSME. It must be considered 
that the actuators can not generate forces larger than 120 Newtons. The values of the 
physical kinematic and dynamic parameters of the CPM are given in table 1 and table 2. 
 

Parameters L(m) L1 (m) L2 (m) D(m) 

Values 0.105 0.5 0.373 0.9144 

Table 1: Kinematic parameters of the CPM 

 
Parameters m1(kg) m2(kg) m3 (kg) m4 (kg) 

Values 1.892994 0.695528 0.2 0.3 

Table 2: Dynamic parameters of the CPM. 

The sample trajectory of the end-effector is chosen to be a circular path with the radius of 
0.175 meters and its center is O(0.425 ,0.425 ,0.3). This path is designed to be completed in 4 
seconds when the end-effector reaches the starting point P1 (0.6, 0.425, 0.3) again with 
constant angular velocity 0.5ω π=  rad/sec. The end-effector path is shown in figure 9. The 
desired end-effector position along x-axis is 0.425 0.175cos( )x tω= +  meters, along y-axis 
is 0.425 0.175sin( )y tω= +  meters and along z-axis is Z=0.3 meters. The desired force 
obtained from the actuators to move the end-effector along the desired trajectory is shown 
in figure 10. 
 

 
Figure 9: End-effector path for the circular trajectory. 
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Figure 10: The desired force obtained from the actuators 

5.4 Simulation results 
To investigate each controller’s performance, computer simulation, carried out in Matlab, is 
used in this thesis. The robot dynamic model, developed earlier, is constructed. The sample 
trajectory, presented in the previous section, is generated and stored offline. The 
environmental disturbances are ignored and full knowledge of the manipulator dynamics 
can be assumed. Hence, the optimal performance of each controller can be obtained and 
compared. The simulation results are presented in table 3. 

5.4.1 PD control with position and velocity reference 
It was required that the robot achieved the desired trajectory with a position error less than 
3 x 10-3 m after 0.3 seconds.  

5.4.2 PD control with gravity compensation 
It was required that the robot achieved the desired trajectory with a position error less than 
3 x 10-4 m after 0.3 seconds.  

5.4.3 PD control with full dynamicsfFeedforward terms 
It was required that the robot achieved the desired trajectory with a position error less than 
10-5 m after 0.3 seconds.  

5.4.4 Computed torque control 
The initial conditions of the error and its derivative of our sample trajectory of the End-
effector, (0) 0e = , and 

0(0)e e= , are used to find c1 and c2 in equation 47. Then, the solution 

of this equation is  

 2
0

DK t
e e te

−
=   (50) 
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Equation 50 suggests that the derivative gain KD should be a maximum value to achieve the 
desired critical damping but the actuator force cannot exceed more than 120 Newtons. Using 
this criterion, the simulation results are presented in table 3. The position and velocity errors 
of the end-effector obtained from the controllers and the actuator forces required by these 
controllers are shown in figures 11 to 22. 
 

Controller KP KD Position RSME Velocity RSME 
Pd Control with Position 
and Velocity Reference 12691 436 0.0027 0.0223 

Pd Control with Gravity 
Compensation 8507 436 3.4804 x 10-4 0.021 

Pd Control with Full 
Dynamics Feedforward 7053 436 3.0256 x 10-4 0.0182 

Computed Torque Control 2550.25 101 2.3469 x 10-4 0.0161 

Table 3: The performance of various controllers 

 
Figure 11 Position error of the end-effector obtained from the Simple PD Controller. 

 
Figure 12: Velocity error of the end-effector obtained from the Simple PD Controller. 
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Figure 13: The actuator force required by the Simple PD Controller. 

 
Figure 14: Position error of the end-effector obtained from the second PD Controller.  

 
Figure 15: Velocity error of the end-effector obtained from the second PD Controller.  
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Figure 16: The actuator force required by the second PD Controller.  

 
Figure 17: Position error of the end-effector obtained from the third PD Controller. 

 
Figure 18: Velocity error of the end-effector obtained from the third PD Controller. 
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Figure 19: The actuator force required by the third PD Controller.  

 
Figure 20: Position error of the end-effector obtained from the computed torque controller. 

 
Figure 21: Velocity error of the end-effector obtained from the computed torque controller. 



Cartesian Parallel Manipulator Modeling, Control and Simulation 

 

291 

 
Figure 22: The actuator force required by the computed torque controller. 

6. Conclusions 
The research presented in this chapter establishes the CPM as a viable robotic device for 
three degrees of freedom manipulation. The manipulator offers the advantages associated 
with other parallel manipulators, such as light weight construction; while avoiding some of 
the traditional disadvantages of parallel manipulators such as the extensive use of spherical 
joints and coupling of the platform orientation and position. The CPM employs only 
revolute and prismatic joints to achieve translational motion of the moving platform. The 
main advantages of this parallel manipulator are that all of the actuators can be attached 
directly to the base, closed-form solutions are available for the forward and inverse 
kinematics, and the moving platform maintains the same orientation throughout the entire 
workspace. From simulations done in this research, performance of various motion 
controllers are studied and compared. Although the simple PD controller with only position 
and velocity reference is easy to implement and no knowledge of the system is needed to 
develop this type of controller, the tracking ability is very poor compared to the rest of the 
controllers used in this thesis. At the next step, when partial dynamic modeling information 
is incorporated into the controller, the PD controller with gravity compensation is 
implemented. The simulation results show a significant improvement in tracking ability 
from a simple PD controller. Next, the verification is needed to determine if complete 
mathematical modeling knowledge is needed to give the controller complete advantage in 
motion control. Hence, the PD controller with full dynamic feedforward terms and 
computed torque controller are implemented and put to the test. The model based 
controllers such as computed torque and PD control with full dynamic feedforward terms 
can generate force commands more intelligently and accurately than simple non-model 
based controllers. Hence, the need for studying dynamics of robot manipulator as well as 
having a good understanding of various basic motion controller theories are important in 
designing and controlling motion of the robot to achieve the highest quality and quantity of 
work. The simulation results show that the computed torque controller gives the best 
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performance. This is a result of the computed torques canceling the nonlinear components 
of the controlled system. From the observations seen in this work, one can see the 
motivation for engineers to develop more advanced controllers that not only know the 
dynamic model of the manipulator, but can also detect if the dynamic is changed and can 
tune itself accordingly (i.e. adaptive control). 

7. Future work 
1. The effect of some unknown parameters such as the friction and the nonlinear factors 

introduced by the motors and the gear boxes which may be obtained by experimental 
measurements and through the identification methods can be studied. 

2. The performance of model based control relies on an accurate model of a system. 
However, identifying the accurate dynamic model of a system is very difficult. 
Therefore, effective controllers for the versatile application of parallel robots should be 
developed. Adaptive control has the potential to improve the tracking accuracy because 
it updates the unknown parameters online. Adaptive control algorithm is too 
complicated to be utilized in high speed applications. In such applications, robust 
independent joint control is a prospective method to improve the performance of 
simple PD control. 

3. Adaptive Neuro Fuzzy Inference System (ANFIS) controller can be used for each active 
joint to generate the required control system, then its performance is compared with the 
conventional controllers. Although many of model based methods have been found and 
they provide satisfactory solutions, these solutions have been subordinated to the 
development of the mathematical theories that deal with over idealized problems 
bearing little relation to practice. 
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1. Introduction     
The mechanical structure of today’s machine tools is based on serial kinematics in the 
overwhelming majority of cases. Parallel kinematics with closed kinematics chains offer 
many potential benefits for machine tools but they also cause many drawbacks in the design 
process and higher efforts for numerical control and calibration.  
The Parallel Kinematics Machine (PKM) is a new type of machine tool which was firstly 
showed at the 1994 International Manufacturing Technology in Chicago by two American 
machine tool companies, Giddings & Lewis and Ingersoll.  
Parallel Kinematics Machines seem capable of answering the increase needs of industry in 
terms of automation. The nature of their architecture tends to reduce absolute positioning 
and orienting errors (Stan et al., 2006). Their closed kinematics structure allows them 
obtaining high structural stiffness and performing high-speed motions. The inertia of its 
mobile parts is reduced, since the actuators of a parallel robot are often fixed to its base and 
the end-effector can perform movements with higher accelerations. One drawback with 
respect to open-chain manipulators, though, is a typically reduced workspace and a poor 
ratio of working envelope to robot size.  
In theory, parallel kinematics offer for example higher stiffness and at the same time higher 
acceleration performance than serial structures. In reality, these and other properties are 
highly dependent on the chosen structure, the chosen configuration for a structure and the 
position of the tool centre point (TCP) within the workspace. There is a strong and complex 
link between the type of robot’s geometrical parameters and its performance. It’s very 
difficult to choose the geometrical parameters intuitively in such a way as to optimize the 
performance. The configuration of parallel kinematics is more complex due to the high 
sensitivity to variations of design parameters. For this reason the design process is of key 
importance to the overall performance of a Parallel Kinematics Machines. For the 
optimization of Parallel Kinematics Machines an application-oriented approach is necessary. 
In this chapter an approach is presented that includes the definition of specific objective 
functions as well as an optimization algorithm. The presented algorithm provides the basis 
for an overall multiobjective optimization of several kinematics structures.  
An important objective of this chapter is also to propose an optimization method for planar 
Parallel Kinematics Machines that combines performance evaluation criteria related to the 
following robot characteristics: workspace, design space and transmission quality index. 
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Furthermore, a genetic algorithm is proposed as the principle optimization tool. The success 
of this type of algorithm for parallel robots optimization has been demonstrated in various 
papers (Stan et al., 2006). 
 

 
Fig. 1. Parallel kinematics for milling machines 

For parallel kinematics machines with reduced number of degrees of freedom kinematics 
and singularity analyses can be solved to obtain algebraic expressions, which are well suited 
for an implementation in optimum design problems. 
 

 
 

Fig. 2. Benefits of Parallel Kinematics Machines 

High dynamical performance is achieved due to the low moved masses. Due to the closed 
kinematics the movements of parallel kinematics machines are vibration free for which the 
accuracy is improved. Finally, the modular concept allows a cost-effective production of the 
mechanical parts. 
In this chapter, the optimization workspace index is defined as the measure to evaluate the 
performance of two degree of freedom Parallel Kinematics Machines. Another important 
contribution is the optimal dimensioning of the two degree-of-freedom Parallel Kinematics 
Machines of type Bipod and Biglide for the largest workspace using optimization based on 
Genetic Algorithms. 
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2. Objective functions used for optimization of machine tools with parallel 
kinematics 
One of the main influential factors on the performance of a machine tool with parallel 
kinematics is its structural configuration. The performance of a machine tool with parallel 
kinematics can be evaluated by its kinematic, static and dynamic properties. Optimal design 
is one of the most important issues in the development of a parallel machine tool. Two 
issues are involved in the optimal design: performance evaluation and dimensional 
synthesis. The latter one is one of the most difficult issues in this field. In the optimum 
design process, several criteria could be involved for a design purpose, such as workspace, 
singularity, dexterity, accuracy, stiffness, and conditioning index. 
After its choice, the next step on the machine tool with parallel kinematics design should be 
to establish its dimensions. Usually this dimensioning task involves the choice of a set of 
parameters that define the mechanical structure of the machine tool. The parameter values 
should be chosen in a way to optimize some performance criteria, dependent upon the 
foreseen application. 
The optimization of machine tools with parallel kinematics can be based on the following 
objectives functions: 

• workspace, 
• the overall size of the machine tool, 
• kinematic transmission of forces and velocities, 
• stiffness, 
• acceleration capabilities, 
• dexterity, 
• accuracy, 
• the singular configurations, 
• isotropy. 

In the design process we want to determine the design parameters so that the parallel 
kinematics machine fulfills a set of constraints. These constraints may be extremely different 
but we can mention: 

• workspace requirement, 
• maximum accuracy over the workspace for a given accuracy of the sensors, 
• maximal stiffness of the Parallel Kinematics Machines in some direction, 
• minimum articular forces for a given load, 
• maximum velocities or accelerations for given actuator velocities and accelerations. 

Determination of the architecture and size of a mechanism is an important issue in the 
mechanism design.  Several objectives are contradictory to each other. An optimization with 
only one objective runs into unusable solutions for all other objectives. Unfortunately, any 
change that improves one performance will usually deteriorate the other. This trade-off 
occurs with almost every design and this inevitable generates the problem of design 
optimization. Only a multiobjective approach will result in practical solutions for machine 
tool applications. 
The classical methods of design optimization, such as iterative methods, suffer from 
difficulties in dealing with this problem. Firstly, optimization problems can take many 
iterations to converge and can be sensitive to numerical problems such as truncation and 
round-off error in the calculation. Secondly, most optimization problems depend on initial 
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guesses, and identification of the global minimum is not guaranteed. Therefore, the relation 
between the design parameters and objective function is difficult to know, thus making it 
hard to obtain the most optimal design parameters of the mechanism. Also, it’s rather 
difficult to investigate the relations between performance criteria and link lengths of all 
mechanisms. So, it’s important to develop a useful optimization approach that can express 
the relations between performance criteria and link lengths. 

2.1 Workspace 
The workspace of a robot is defined as the set of all end-effector configurations which can be 
reached by some choice of joint coordinates. As the reachable locations of an end-effector are 
dependent on its orientation, a complete representation of the workspace should be 
embedded in a 6-dimensional workspace for which there is no possible graphical 
illustration; only subsets of the workspace may therefore be represented.  
There are different types of workspaces namely constant orientation workspace, maximal 
workspace or reachable workspace, inclusive orientation workspace, total orientation 
workspace, and dextrous workspace. The constant orientation workspace is the set of 
locations of the moving platform that may be reached when the orientation is fixed. The 
maximal workspace or reachable workspace is defined as the set of locations of the end-
effector that may be reached with at least one orientation of the platform. The inclusive 
orientation workspace is the set of locations that may be reached with at least one 
orientation among a set defined by ranges on the orientation parameters. The set of locations 
of the end-effector that may be reached with all the orientations among a set defined by 
ranges on the orientations on the orientation parameters constitute the total orientation 
workspace. The dextrous workspace is defined as the set of locations for which all 
orientations are possible. The dextrous workspace is a special case of the total orientation 
workspace, the ranges for the rotation angles (the three angles that define the orientation of 
the end-effector) being [0,2π].  
In the literature, various methods to determine workspace of a parallel robot have been 
proposed using geometric or numerical approaches. Early investigations of robot workspace 
were reported by (Gosselin, 1990), (Merlet, 1005), (Kumar & Waldron, 1981), (Tsai and Soni, 
1981), (Gupta & Roth, 1982), (Sugimoto & Duffy, 1982), (Gupta, 1986), and (Davidson & 
Hunt, 1987). The consideration of joint limits in the study of the robot workspaces was 
presented by (Delmas & Bidard, 1995). Other works that have dealt with robot workspace 
are reported by (Agrawal, 1990), (Gosselin & Angeles, 1990), (Cecarelli, 1995). (Agrawal, 
1991) determined the workspace of in-parallel manipulator system using a different concept 
namely, when a point is at its workspace boundary, it does not have a velocity component 
along the outward normal to the boundary. Configurations are determined in which the 
velocity of the end-effector satisfies this property. (Pernkopf & Husty, 2005) presented an 
algorithm to compute the reachable workspace of a spatial Stewart Gough-Platform with 
planar base and platform (SGPP) taking into account active and passive joint limits. Stan 
(Stan, 2003) presented a genetic algorithm approach for multi-criteria optimization of PKM 
(Parallel Kinematics Machines). Most of the numerical methods to determine workspace of 
parallel manipulators rest on the discretization of the pose parameters in order to determine 
the workspace boundary (Cleary & Arai, 1991), (Ferraresi et al., 1995). In the discretization 
approach, the workspace is covered by a regularly arranged grid in either Cartesian or polar 
form of nodes. Each node is then examined to see whether it belongs to the workspace. The 
accuracy of the boundary depends upon the sampling step that is used to create the grid. 
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The computation time grows exponentially with the sampling step. Hence it puts a limit on 
the accuracy. Moreover, problems may occur when the workspace possesses singular 
configurations. Other authors proposed to determine the workspace by using optimization 
methods (Stan, 2003). Numerical methods for determining the workspace of the parallel 
robots have been developed in the recent years. Exact computation of the workspace and its 
boundary is of significant importance because of its impact on robot design, robot placement 
in an environment, and robot dexterity. 
Masory, who used the discretisation method (Masory & Wang, 1995), presented interesting 
results for the Stewart-Gough type parallel manipulator: 

• The mechanical limits on the passive joints play an important role on the volume of 
the workspace. For ball and socket joints with given rotation ability, the volume of 
the workspace is maximal if the main axes of the joints have the same directions as 
the links when the robot is in its nominal position. 

• The workspace volume is roughly proportional to the cube of the stroke of the 
actuators. 

• The workspace volume is not very sensitive to the layout of the joints on the 
platforms, even though it is maximal when the two platforms have the same 
dimension (in this case, the robot is in a singular configuration in its nominal 
position). 

Even though powerful three-dimensional Computer Aided Design and Dynamic Analysis 
software packages such as Pro/ENGINEER, IDEAS, ADAMS and Working Model 3-D are 
now being used, they cannot provide important visual and realistic workspace information 
for the proposed design of a parallel robot. In addition, there is a great need for developing 
methodologies and techniques that will allow fast determination of workspace of a parallel 
robot. A general numerical evaluation of the workspace can be deduced by formulating a 
suitable binary representation of a cross-section in the taskspace. A cross-section can be 
obtained with a suitable scan of the computed reachable positions and orientations p, once 
the forward kinematic problem has been solved to give p as function of the kinematic input 
joint variables q. A binary matrix Pij can be defined in the cross-section plane for a 
crosssection of the workspace as follows: if the (i, j) grid pixel includes a reachable point, 
then Pij = 1; otherwise Pij = 0, as shown in Fig. 3. Equations (1)-(4) for determining the 
workspace of a robot by discretization method can be found in Ref. (Ottaviano et al., 2002). 
Then is computed i and j: 
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where i and j are computed as integer numbers. Therefore, the binary mapping for a 
workspace cross-section can be given as: 
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where W(H) indicates workspace region; ∈ stands for “belonging to” and ∉ is for “not 
belonging to”.  
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Fig. 3. The general scheme for binary representation and evaluation of robot workspace 

In addition, the proposed binary representation is useful for a numerical evaluation of the 
position workspace by computing the sections areas A as: 
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This numerical approximation of the workspace area has been used for the optimum design 
purposes. 

2.2 Kinematics accuracy 
The kinematics accuracy is a key factor for the design and application of the machine tools 
with parallel kinematics. But the research of the accuracy is still in initial stage because of 
the various structures and the nonlinear errors of the parallel kinematics machine tools. 
To analyze the sensitiveness of the structural error is one of the directions for the research of 
structural accuracy. An approach was introducing a dimensionless factor of sensitiveness 
for every leg of the structure. Other approach includes the use of the value of Jacobian 
matrix as sensitivity index for the whole legs or the use of condition number of Jacobian 
matrix as a quantity index to describe the error sensitivity of the whole system. 

2.3 Stiffness 
Stiffness describes the ratio “deformation displacement to deformation force” (static 
stiffness). In case of dynamic loads this ratio (dynamic stiffness) depends on the exciting 
frequencies and comes to its most unfavorable (smallest) value at resonance (Hesselbach et 
al., 2003). In structural mechanics deformation displacement and deformation force are 
represented by vectors and the stiffness is expressed by the stiffness matrix K. 

2.4 Singular configurations 
Because singularity leads to a loss of the controllability and degradation of the natural 
stiffness of manipulators, the analysis of Parallel Kinematics Machines has drawn 
considerable attention. This property has attracted the attention of several researchers 
because it represents a crucial issue in the context of analysis and design. Most Parallel 
Kinematics Machines suffer from the presence of singular configurations in their workspace 
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that limit the machine performances. The singular configurations (also called singularities) 
of a Parallel Kinematics Machine may appear inside the workspace or at its boundaries. 
There are two main types of singularities (Gosselin & Angeles, 1990). A configuration where 
a finite tool velocity requires infinite joint rates is called a serial singularity or a type 1 
singularity. A configuration where the tool cannot resist any effort and in turn, becomes 
uncontrollable is called a parallel singularity or type 2 singularity. Parallel singularities are 
particularly undesirable because they cause the following problems: 

• a high increase of forces in joints and links, that may damage the structure, 
• a decrease of the mechanism stiffness that can lead to uncontrolled motions of the 

tool though actuated joints are locked. 
Thus, kinematics singularities have been considered for the formulated optimum design of 
the Parallel Kinematics Machines. 

2.5 Dexterity 
Dexterity has been considered important because it is a measure of a manipulator’s ability to 
arbitrarily change its position and orientation or to apply forces and torques in arbitrary 
direction. Many researchers have performed design optimization focusing on the dexterity 
of parallel kinematics by minimization of the condition number of the Jacobian matrix. In 
regards to the PKM’s dexterity, the condition number ρ, given by ρ=σmax/σmin where σmax 
and σmin are the largest and smallest singular values of the Jacobian matrix J. 

2.6 Manipulability 
The determinant of the Jacobian matrix J, det(J), is proportional to the volume of the hyper 
ellipsoid. The condition number represents the sphericity of the hyper ellipsoid. The 
manipulability measure w, given by ( )TJJdetw =  was defined to describe the ability of 
machine tool with parallel structure to change its position and direction in its workspace. 

3. Two DOF Parallel Kinematics Machines 
3.1 Geometrical description of the Parallel Kinematics Machines 
A planar Parallel Kinematics Machines is formed when two or more planar kinematic chains 
act together on a common rigid platform. The most common planar parallel architecture is 
composed of two RPR chains (Fig. 4), where the notation RPR denotes the planar chain 
made up of a revolute joint, a prismatic joint, and a second revolute joint in series. Another 
common architecture is PRRRP (Fig. 5). Two general planar Parallel Kinematics Machines 
with two degrees of freedom activated by prismatic joints are shown in Fig. 4 and Fig. 5. 
There are a wide range of parallel robots that have been developed but they can be divided 
into two main groups: 

• Type 1) Parallel Kinematics Machine with variable length struts, 
• Type 2) Parallel Kinematics Machine with constant length struts. 

Since mobility of these Parallel Kinematics Machines is two, two actuators are required to 
control these Parallel Kinematics Machines. For simplicity, the origin of the fixed base frame 
{B} is located at base joint A with its x-axis towards base joint B, and the origin of the 
moving frame {M} is located in TCP, as shown in Fig. 7. The distance between two base 
joints is b. The position of the moving frame {M} in the base frame {B} is x=(xP, yP)T and the 
actuated joint variables are represented by q=(q1, q2)T. 
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Fig. 4. Variable length struts Parallel Kinematics Machine 
 

 
Fig. 5. Constant length struts Parallel Kinematics Machine 

3.2 Kinematic analysis of the Parallel Kinematics Machines 
PKM kinematics deal with the study of the PKM motion as constrained by the geometry of 
the links. Typically, the study of the PKMs kinematics is divided into two parts, inverse 
kinematics and forward (or direct) kinematics. The inverse kinematics problem involves a 
known pose (position and orientation) of the output platform of the PKM to a set of input 
joint variables that will achieve that pose. The forward kinematics problem involves the 
mapping from a known set of input joint variables to a pose of the moving platform that 
results from those given inputs. However, the inverse and forward kinematics problems of 
our PKMs can be described in closed form. 
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Fig. 6. The general kinematic scheme of a PRRRP Parallel Kinematics Machine 
 

 
Fig. 7. The general kinematic scheme of a RPRPR Parallel Kinematics Machine 
The kinematics relation between x and q of these 2 DOF Parallel Kinematics Machines can 
be expressed solving the following equation: 

 f(x, q)=0  (4) 

Then the inverse kinematics problem of the PKM from Fig. 6 can be solved by writing the 
following equations: 

 2
1

2
21 )Lx(Lyq pP −−±=   (5) 
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Then the inverse kinematics problem of the PKM from Fig. 7 can be solved by writing the 
following equations: 

 
22

1 PP yxq +=   (6) 

22
2 )( PP yxbq +−=  

The TCP position can be calculated by using inverted transformation, from (6), thus the 
direct kinematics of the PKM can be described as: 

 b
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2
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22
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  (7) 

22
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where the values of the xp, yP can be easily determined.  
The forward and the inverse kinematics problems were solved under the MATLAB 
environment and it contains a user friendly graphical interface. The user can visualize the 
different solutions and the different geometric parameters of the PKM can be modified to 
investigate their effect on the kinematics of the PKM. This graphical user interface can be a 
valuable and effective tool for the workspace analysis and the kinematics of the PKM. The 
designer can enhance the performance of his design using the results given by the presented 
graphical user interface. 
The Matlab-based program is written to compute the forward and inverse kinematics of the 
PKM with 2 degrees of freedom. It consists of several MATLAB scripts and functions used 
for workspace analysis and kinematics of the PKM. A friendly user interface was developed 
using the MATLAB-GUI (graphical user interface). Several dialog boxes guide the user 
through the complete process. 
 

 
Fig. 8.  Graphical User Interface (GUI) for solving inverse kinematics of the 2 DOF planar 
Parallel Kinematics Machine of type Bipod in MATLAB environment. 
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The user can modify the geometry of the 2 DOF PKM. The program visualizes the 
corresponding kinematics results with the new inputs. 
 

 
Fig. 9. Parallel Kinematics Machine configuration for XP=25 mm YP=60 mm 
 

 
Fig. 10. Parallel Kinematics Machine configuration for XP=35 mm YP=60 mm 

4. Performance evaluation of Parallel Kinematics Machines 
4.1 Workspace determination and optimization of the Parallel Kinematics Machines 
The workspace is one of the most important kinematics properties of manipulators, even by 
practical viewpoint because of its impact on manipulator design and location in a workcell 
(Ceccarelli et al., 2005). Workspace is a significant design criterion for describing the 
kinematics performance of parallel robots. The planar parallel robots use area to evaluate 
the workspace ability. However, is hard to find a general approach for identification of the 
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workspace boundaries of the parallel robots. This is due to the fact that there is not a closed 
form solution for the direct kinematics of these parallel robots. That’s why instead of 
developing a complex algorithm for identification of the boundaries of the workspace, it’s 
developed a general visualization method of the workspace for its analysis and its design. 
A general numerical evaluation of the workspace can be deduced by formulating a suitable 
binary representation of a cross-section in the taskspace. Other authors proposed to 
determine the workspace by using optimization (Stan, 2003). A fundamental characteristic 
that must be taken into account in the dimensional design of robot manipulators is the area 
of their workspace. It is crucial to calculate the workspace and its boundaries with perfect 
precision, because they influence the dimensional design, the manipulator’s positioning in 
the work environment, and its dexterity to execute tasks. Because of this, applications 
involving these Parallel Kinematics Machines require a detailed analysis and visualization 
of the workspace of these PKMs. The algorithm for visualization of workspace needs to be 
adaptable in nature, to configure with different dimensions of the parallel robot’s links. The 
workspace is discretized into square and equal area sectors. A multi-task search is 
performed to determine the exact workspace boundary. Any singular configuration inside 
the workspace is found along with its position and dimensions. The area of the workspace is 
also computed.  
The workspace is the area in the plane case where the tool centre point (TCP) can be 
controlled and moved continuously and unobstructed. The workspace is limited by 
singularities. At singularity poses it is not possible to establish definite relations between 
input and output coordinates. Such poses must be avoided by the control.  
The robotics literature contains various indices of performance (Du Plessis &  Snyman, 2001) 
(Schoenherr & Bemessen, 1998), such as the workspace index W and the general equation is 
given in (8). Workspace for this kind of robot may be easily generated by intersection of the 
enveloping surfaces and the area can be also computed. 

 ∫= W
dWW

  (8) 

The workspace of the 2 DOF planar PKM of type Bipod is often represented as a region of 
the plane, which can be obtained by the reacheable points of the TCP. 
 

 
Fig. 11.  The workspace is the intersection of two enveloping surface of two legs. 

The following presents the main factors affecting workspace. For ease of comparison a cubic 
working envelope with a common contour length is used together with a machine size that 
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is calculated from the maximum required strut length. Other design specific factors such as 
the end-effector size, drive volumes have been neglected for simplification. 
The working envelope to machine size using variable length struts is dependent on the 
following factors: 

1. The length of the extended and retracted actuator (Lmin, Lmax); 
2. Limitations due to the joint angle range. 

The limiting effect of the joint limits is clearly illustrated in Fig. 12-13. 
 

 
Fig. 12. Workspace of the Parallel Kinematics Machine with variable length struts  
 

 
Fig. 13. Workspace of the Parallel Kinematics Machine with constant length struts  

In this section, the workspace of the proposed Parallel Kinematics Machines will be 
discussed systematically. It’s very important to analyze the area and the shape of workspace 
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for parameters given robot in the context of industrial application. The workspace is 
primarily limited by the boundary of solvability of inverse kinematics. Then the workspace 
is limited by the reachable extent of drives and joints, occurrence of singularities and by the 
link and platform collisions. The PKM mechanisms PRRRP and RPRPR realize a wide 
workspace as well as high-speed. Analysis, visualization of workspace is an important 
aspect of performance analysis. A numerical algorithm to generate reachable workspace of 
parallel manipulators is introduced. 
 

 
Fig. 14. The GUI for calculus of workspace for the planar 2 DOF Parallel Kinematics 
Machine with variable length struts 
 

 
Fig. 15. The GUI for calculus of workspace for the planar 2 DOF Parallel Kinematics 
Machine with constant length struts 

In the followings is presented the workspace analysis of 2 DOF Bipod PKM. 
Case I: 
Conditions: 

bqq minmin >+ 21 , bq max >1 , bq max >2  
a) for y>0 
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Fig. 16. The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 

b) for +∞<<∞− y , there exist two regions of the workspace 
 

 
Fig. 17. The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
Case II: 
Conditions: 

bqq minmin >+ 21 , bq max <1 , bq max <2  
a) for y>0 
 

 
Fig. 18. The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
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b) for +∞<<∞− y , there exist two regions of the workspace 

 
Fig. 19.  The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
Case III: 
Conditions: bqq minmin <+ 21 , bq max >1 , bq max >2  
 

 
Fig. 20.  The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
Case IV: 
Conditions: bqq minmin <+ 21 , bq max <1 , bq max <2  
 

 
Fig. 21.  The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
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Case V: 
Conditions: bqq minmin <+ 21 , minmax qbq 21 +> , minmax qbq 12 +>  
 

 
Fig. 22.  The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
Case VI: 
Conditions: bqq minmin >+ 21 , minmax qbq 21 +> , minmax qbq 12 +>  
 

 
Fig. 23.  The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
Case VII: 
Conditions: bq min <1 , bq max <1 , bq min <2 , bq max <2 , bqq minmin <+ 21 , 

bqq maxmax >+ 21  

 
Fig. 24.  The workspace of the planar 2 DOF Parallel Kinematics Machine is shown as the 
shading region. 
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In the followings is presented the workspace analysis of 2 DOF Biglide Parallel Kinematics 
Machine. 

 
a) Workspace for the planar 2 DOF Parallel Kinematics Machine, case 

mmqq maxmax 10021 ==  

 
b) Workspace for the planar 2 DOF Parallel Kinematics Machine, case 

mmqq maxmax 20021 ==  

 
c) Workspace for the planar 2 DOF Parallel Kinematics Machine, case 

mmqq maxmax 40021 ==  

Fig. 25. Different regions of workspace for Biglide PKM for different lengths of stroke of 
actuators 
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4.2 Singularity analysis of the Biglide Parallel Kinematics Machine 
Because singularity leads to a loss of the controllability and degradation of the natural 
stiffness of manipulators, the analysis of parallel manipulators has drawn considerable 
attention. Most parallel robots suffer from the presence of singular configurations in their 
workspace that limit the machine performances. Based on the forward and inverse Jacobian 
matrix, three cases of singularities of parallel manipulators can be obtained. Singular 
configurations should be avoided. 
In the followings are presented the singular configurations of 2 DOF Biglide Parallel 
Kinematic Machine. 
 

 
 

Fig. 26. Singular configuration for the planar 2 DOF Biglide Parallel Kinematic Machine 
 

 
Fig. 27. Singular configuration for the planar 2 DOF Biglide Parallel Kinematic Machine 
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Fig. 28. Singular configuration for the planar 2 DOF Biglide Parallel Kinematic Machine 

4.2 Performance evaluation 
Beside workspace which is an important design criterion, transmission quality index is 
another important criterion. The transmission quality index couples velocity and force 
transmission properties of a parallel robot, i.e. power features (Hesselbach et al., 2004). Its 
definition runs: 

 
1

2

−⋅
=

JJ
I

T   (9) 

where I is the unity matrix. T is between 0<T<1; T=0 characterizes a singular pose, the 
optimal value is T=1 which at the same time stands for isotropy (Stan, 2003). 
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Fig. 29. Transmission quality index for RPRPR Bipod Parallel Kinematic Machine 
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Fig. 30. Transmission quality index for PRRRP Biglide Parallel Kinematic Machine 

As it can be seen from the Fig. 30, the performances of the PRRRP Biglide Parallel Kinematic 
Machine are constant along y-axis. On every y section of such workspace, the performance 
of the robot can be the same. 

5. Optimal design of 2 DOF Parallel Kinematics Machines 
5.1 Optimization results for RPRPR Parallel Kinematic Machine 
The design of the PKM can be made based on any particular criterion. The chapter presents 
a genetic algorithm approach for workspace optimization of Bipod Parallel Kinematic 
Machine. For simplicity of the optimization calculus a symmetric design of the structure was 
chosen. 
In order to choose the PKM’s dimensions b, q1min, q1max, q2min, q2max, we need to define a 
performance index to be maximized. The chosen performance index is W (workspace) and T 
(transmission quality index). 
An objective function is defined and used in optimization. It is noted as in Eq. (8), and 
corresponds to the optimal workspace and transmission quality index. We can formalize our 
design optimization problem as the following: 

 ObjFun=W+T  (10) 

Optimization problem is formulated as follows: the objective is to evaluate optimal link 
lengths which maximize Eq. (10). The design variables or the optimization factor is the ratios 
of the minimum link lengths to the base link length b, and they are defined by: 

 q1min/b  (11) 
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Constraints to the design variables are: 

 0,52<q1min/b<1,35    (12) 

 q1min=q2min, q1max=q2max, q1max=1,6q1min, q2max=1,6q2min  (13) 

 
Fig. 31. Flowchart of the optimization Algorithm with GAOT (Genetic Algorithm 
Optimization Toolbox) 

For this example the lower limit of the constraint was chosen to fulfill the condition q1min≥b/2 
that means the minimum stroke of the actuators to have a value greater than the half of the 
distance between them in order to have a workspace only in the upper region. For simplicity 
of the optimization calculus the upper bound was chosen q1min≤1,35b. 
During optimization process using genetic algorithm it was used the following GA 
parameters, presented in Table 1. 
 

Generations 100 
Crossover rate 0.08 

Mutation rate 0.005 
Population 50 

Table 1. GA Parameters 

Researchers have used genetic algorithms, based on the evolutionary principle of natural 
chromosomes, in attempting to optimize the design parallel kinematics. Kirchner and 
Neugebaur (Kirchner & Neugebaur, 2000), emphasize that a parallel manipulator machine 
tool cannot be optimized by considering a single performance criterion. Also, using a 
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genetic algorithm, they consider a multiple design criteria, such as the “velocity 
relationship” between the moving platform and the actuator legs, the influence of actuator 
leg errors on the accuracy of the moving platform, actuator forces, stiffness, as well as a 
singularity-free workspace. 
A genetic algorithm (GA) is used because its robustness and good convergence properties. 
The genetic algorithms optimization approach has the clear advantage over conventional 
optimization approaches in that it allows a number of solutions to be examined in a single 
design cycle.  
The traditional methods searches optimal points from point to point, and are easy to fall into 
local optimal point. Using a population size of 50, the GA was run for 100 generations. A list 
of the best 50 individuals was continually maintained during the execution of the GA, 
allowing the final selection of solution to be made from the best structures found by the GA 
over all generations. 
We performed a kinematic optimization in such a way to maximize the objective function. It 
is noticed that optimization result for Bipod when the maximum workspace of the 2 DOF 
planar PKM is obtained for b/q min1 =1,35. The used dimensions for the 2 DOF parallel 
PKM were: q1min=80 mm, q1max=130 mm, q2min=80 mm, q2max=130 mm, b=60 mm. Maximum 
workspace of the Parallel Kinematics Machine with 2 degrees of freedom was found to be 
W= 4693,33 mm2. 
If an elitist GA is used, the best individual of the previous generation is kept and compared 
to the best individual of the new one. If the performance of the previous generation’s best 
individual is found to be superior, it is passed on to the next generation instead of the 
current best individual. 
There have been obtained different values of the parameter optimization (q1/b) for different 
objective functions. The following table presents the results of optimization for different 
goal functions. W1 and W2 are the weight factors. 
 

Method GAOT Toolbox MATLAB 

Z=W1·T+W2·W, W1=0,7 
and W2=0,3 q1/b = 0.92 

Z=W1·T+W2·W, W1=0,3 
and W2=0,7 q1/b= 1.13 

Z= W1·T, 
W1=1 and W2=0 q1/b=0.71 

Goal functions 
 

Z=W2·W, 
W1=0 and W2=1 q1/b=1.3 

Table 2. Results of Optimization for Different Goal Functions 

The results show that GA can determine the architectural parameters of the robot that 
provide an optimized workspace. Since the workspace of a parallel robot is far from being 
intuitive, the method developed should be very useful as a design tool. 
However, in practice, optimization of the robot geometrical parameters should not be 
performed only in terms of workspace maximization. Some parts of the workspace are more 
useful considering a specific application. Indeed, the advantage of a bigger workspace can 
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be completely lost if it leads to new collision in parts of it which are absolutely needed in the 
application. However, it’s not the case of the presented structure. 

5.2 Optimization results for PRRRP Parallel Kinematic Machine 
An objective function is defined and used in optimization. Objective function contains 
workspace and transmission quality index. Optimization parameter was chosen as the link 
length L2. The constraints was established as 1<L2<1.2. After performing the optimization 
the following results were obtained: 
 

Method GAOT Toolbox MATLAB 

Z=W1·T+W2·W, W1=0,7 
and W2=0,3 L2 = 1.1 

Z=W1·T+W2·W, W1=0,3 
and W2=0,7 L2= 1.1556 

Z= W1·T, 
W1=1 and W2=0 L2=1 

 
 
 

Goal functions 
 

Z=W2·W, 
W1=0 and W2=1 L2=1.2 

Table 3. Results of Optimization for Different Goal Functions 

Based on the presented optimization methodology we can conclude that the optimum 
design and performance evaluation of the Parallel Kinematics Machines is the key issue for 
an efficient use of Parallel Kinematics Machines. This is a very complex task and in this 
paper was proposed a framework for the optimum design considering basic characteristics 
of workspace, singularities and isotropy. 

6. Conclusion 
The fundamental guidelines for genetic algorithm to optimal design of micro parallel robots 
have been introduced. It is concluded that with three basic generators selection, crossover 
and mutation genetic algorithm could search the optimum solution or near-optimal solution 
to a complex optimization problem of micro parallel robots. In the paper, design 
optimization is implemented with Genetic Algorithms (GA) for optimization considering 
transmission quality index, design space and workspace. Genetic algorithms (GA) are so far 
generally the best and most robust kind of evolutionary algorithms. A GA has a number of 
advantages. It can quickly scan a vast solution set. Bad proposals do not affect the end 
solution negatively as they are simply discarded. The obtained results have shown that the 
use of GA in such kind of optimization problem enhances the quality of the optimization 
outcome, providing a better and more realistic support for the decision maker. 
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1. Introduction 
Since radio telescope is the main tool for human being to search the universe secret, the 
astronomer reached unanimity at the 24th URSI Conference in Kyota, Japan, 1993, and 
proposed to construct the next generation of the large radio telescope (LT) (Nan & Peng, 
2000). From then on, the astronomer of China began the project of Five-hundred meter 
Aperture Spherical radio Telescope (FAST) (Qiu, 1998; Li, 1998). 
It is well known that Arecibo is the breakthrough of radio telescope. Its main mirror, 305m 
in diameter, is fixed on the karst base, and an elaborately designed feed system illuminates a 
part of the mirror which forms an effective aperture of the telescope with about 200m. The 
feed system is movable at a height of about 100 m for tracking the object to be observed. The 
enormous receiving area of the telescope will enable it to make many important 
astronomical discoveries inaccessible to lesser instruments, despite its small sky coverage 
(20° zenith scan angle), due to geometrical configuration, and narrow frequency bandwidth, 
originated from spherical aberration. An upgrade project has recently been carried out for 
the Arecibo telescope, in which a heavy and complex hence expensive Gregorian dual-
reflector feed system is introduced for correcting the spherical aberration and a broad 
bandwidth is affected (Duan, 1999). 
For the sake of satisfying the requirements of low cost and broad bandwidth, the project 
group of FAST decided to substitute the fixed spherical reflector with active reflector units. 
As shown in Fig. 1(a), the reflector consists of almost 2000 elementary reflector units. Fig. 
1(b) shows some active reflector units and supporting mechanisms. The reflector unit is 
small part of spherical surface of regular hexagon and is driven by a supporting mechanism. 
The part of spherical reflector illuminated by the feed is continuously adjusted to fit a 
paraboloid of revolution in real-time, synchronous with the motion of the feed while 
tracking the object to be observed. As it is now free from spherical aberration, a simple, 
light, hence cheap feed system may be adopted to achieve broad bandwidth and full 
polarization.  
In order to fit a paraboloid of revolution, it is necessary that every reflector units should be 
driven by a supporting mechanism with two rotational degrees of freedom and one 
translational degree of freedom (Luo et al., 2000). That means almost 6000 control nodes on 
the whole active reflector should be managed and controled at the same time. It is supposed 
to be very difficult, so a sharing strategy is derived to decrease the number of nodes, which 
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requires three adjacent nodes combined together to share one driver. Basically, there are two 
types of mechanism which can fulfill the required movement for each reflector unit and fit 
for the sharing strategy, 3-PSS mechanism with constraint leg (Wang et al., 2006), shown in 
Fig. 2(a), 3-PSS+C for abbravation, and 3-PRS mechanism (Tang et al., 2007), shown in Fig. 
2(b). 
 

 
(a) (b) 

Fig. 1. The active reflector of spherical radio telescope 
 

 

(a) 3PSS+C (b) 3-PRS 
Fig. 2.  The parallel supporting mechanism 

These mechanisms will bring errors because of the control or dimensional factor. Moreover, 
the fitting surface of reflector will not match exactly with the nominal paraboloid, and the 
sharing strategy also brings accuracy problem. In order to guarantee the highest working 
frequency of large spherical radio telescope, 5GHz, the fitting accuracy of active reflector 
should be studied systematically. Based on the kinematics of 3-PSS+C mechanism, in this 
chapter, one-dimensional and two-dimensional fitting accuracy on the whole active reflector 
is analyzed considering control errors. However, about 2000 constraint legs increase almost 
one quarter of the cost. Thus 3-PRS mechanism is proposed and used as supporting 
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manipulator for reflector unit. Since 3-PRS mechanism has many problems such as parasitic 
motion, advanced research on kinematics with errors is necessary. Then three-dimensional 
fitting accuracy is analyzed based on error kinematics of 3-PRS mechanism. 

2. The analysis of 3-PSS+C supporting mechanism 
2.1 Supporting mechanism description 
As shown in Fig. 2(a), the parallel supporting mechanism consists of a base plate, a movable 
platform, and four connecting legs, three of which have identical kinematic chains, PSS. 
Each of the three legs is composed of one fixed length link (3), and one union driven plate 
(5). The fixed length link (3) is connected to the movable platform (1) and the union driven 
plate (5) by two spherical joints (2) and (4), respectively. The union driven plate (5) is 
connected to the base plate (7) by a prismatic joint (6). The base plate and the movable 
platform are two regular triangles. The passive leg (8) connects the center points of the two 
regular triangles. One end of the passive leg has a 2-DOF universal joint (9), another end is 
fixed to the base plate (7) by a prismatic joint (10). The passive leg (8) can be extensible with 
the prismatic joint (10) along its axis line. Furthermore, when the supporting mechanism is 
assembled, the axis line of the prismatic joint (10) should pass the center of the spherical 
reflector. Since a supporting mechanism should be driven by three actuator legs, as shown 
in Fig. 2, the union driven plate (5) connects three fixed length links in order to reduce the 
actuator number. As a result, the number of actuators of the active reflector is equal to that 
of the reflector units. 
From above description, one can see that the proposed mechanism is such a mechanism 
with n DOFs, which usually consists of n identical actuated legs with 6 DOFs and one 
passive leg with n DOFs connecting the movable platform and the base plate, i.e., the DOF 
of the mechanism is dependent on the passive leg’s DOF. For the mechanism considered in 
this paper, the passive leg is with three DOFs, which means that n equals to 3. The three 
DOFs are one translation along z  axis and two rotations about x  and y  axes. 

2.2 Kinematics analysis 
The mechanism kinematics deals with the study of the mechanism motion as constrained by 
the geometry of the links. Typically, the study of mechanism kinematics is divided into two 
parts, inverse kinematics and forward (or direct) kinematics (Wang & Tang, 2003). The 
inverse kinematics problem involves mapping a known pose (position and orientation) of 
the output platform of the mechanism to a set of input joint variables that will achieve that 
pose. The forward kinematics problem involves the mapping from a known set of input 
joint variables to a pose of the movable platform that results from those given inputs (Wang 
et al., 2001). Generally, as the number of closed kinematics loops in the parallel mechanism 
increases, the difficulty of solving the forward kinematics relationships increases while the 
difficulty of solving the inverse kinematics relationships decreases (Liu et al., 2001).  

2.2.1 Inverse kinematics 
A kinematics model of the mechanism is developed as shown in Fig. 3. The vertices of the 
movable platform are denoted as platform joints iA  ( 1, 2, 3i = ), and the vertices of the base 
plate are denoted as ib  ( 1, 2, 3i = ). A fixed global reference system ℜ : o xyz−  is located at 
the center of the regular triangles 1 2 3b b b  with the z  axis normal to the base plate and the 
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y axis parallel to the side 1 2b b . The circumcircle radius of triangles 1 2 3b b b  is denoted as R . 
Another reference frame, called the top frame ′ℜ : 'o x y z′ ′ ′− , is located at the center of regular 
triangles 1 2 3A A A . The z′  axis is perpendicular to the movable platform and y′ axis parallel 
to the side 1 2A A . The circumcircle radius of triangles 1 2 3A A A  is denoted as r . Vector of fixed 
length links are denoted as iL  ( 1, 2, 3i = ), and the link length for each legs is denoted as l , 
where i iA B l= , ( 1, 2, 3i = ). 
 

 
Fig. 3. The geometric parameters of the parallel mechanism 

The objective of the inverse kinematics solution is to define a mapping from the pose of the 
output platform in the Cartesian space to the set of actuated inputs that achieve that pose. 
For this analysis, the pose of the movable platform is considered known, and the position is 
given by the position vector [ ]' ℜo  and the orientation is given by a matrix 1R . Then there are 

 [ ] ( )T' x y zℜ =o    (1) 

where 0x y= = , 

 1 0
c s s s c

c s
s c s c c

β β α β α
α α

β β α β α

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

R   (2)  

where c  stands for  cosine function, s  stands for  sine function, and α  and β  are the 
orientational DOFs of the movable platform with respect to x  and  y  axes, respectively. 
The coordinate of point iA  in the frame ′ℜ  can be described by the vector [ ]i ′ℜA  ( 1, 2, 3i = ), 
and 

 [ ]
T

1 ' / 2, 3 / 2,0r r
ℜ

⎡ ⎤= −⎣ ⎦A , [ ]
T

2 ' / 2, 3 / 2,0r r
ℜ

⎡ ⎤= ⎣ ⎦A , [ ] [ ]T3 ' ,0,0rℜ = −A   (3) 

Vectors [ ]i ℜB  ( 1, 2, 3i = ) will be defined as the position vectors of base joints iB  in frame 

ℜ , and 
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 [ ]
T

1 1/ 2, 3 / 2,R R z
ℜ

⎡ ⎤= −⎣ ⎦B , [ ]
T

2 2/ 2, 3 / 2,R R z
ℜ

⎡ ⎤= ⎣ ⎦B , [ ] [ ]T3 3,0,R zℜ = −B    (4) 

Vectors [ ]i ℜA  ( 1, 2, 3i = ) in frame o xyz−  can be, therefore, written as 

 [ ] [ ] [ ]1 'i i ′ℜ ℜ ℜ= +A R A o , ( 1, 2, 3i = )  (5) 

Then the inverse kinematics of the parallel mechanism can be solved by writing following 
constraint equation 

  [ ] [ ]i i i lℜ ℜ− = =B A L , ( 1, 2, 3i = )  (6) 

Hence, for a given mechanism and prescribed position and orientation of the movable 
platform, the required actuator inputs can be directly computed from Eq. (6), that is 

 

2 2 2
1 11 12 13

2 2 2
2 21 22 23

2 2 2
3 31 32 33

z l A A A

z l A A A

z l A A A

⎧ = − − +⎪
⎪ = − − +⎨
⎪

= − − +⎪
⎩

   (7) 

where 

11

12

13

21

22

23

31

32

33

( ( 3 )) / 2

3( ) / 2

( 3 ) / 2

( 3 ) / 2

3( ) / 2

( 3 ) / 2

0

A R r c s s

A R rc

A r s c s z

A R r c s s

A R rc

A r s c s z
A R rc
A
A rs z

β β α

α

β β α

β β α

α

β β α
β

β

= − −

= − −

= + +

= − +

= −

= − − +

= − +

=

= +

 

2.2.2 Forward kinematics 
The objective of the forward kinematics solution is to define a mapping from the known set 
of the actuated inputs to the unknown pose of the output platform. For the architecture with 
prismatic actuators, the inputs that are considered known are the lengths of the three 
actuator legs 1z , 2z  and 3z . The unknown pose of the output platform is described by the 

position vector [ ]' ℜo  and angles α  and β . Because it is very difficult to describe the direct 

kinematics in closed form for this type of parallel mechanism, the forward kinematics 
solution should be obtained by numerical methodology as following: 

1. Decide the non-singularity workspace of the mechanism; 
2. Give the initial value of direct kinematics solution; 
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3. Calculate the position coordinates of spherical joints, construct the nonlinear 
equations set by the geometry constraint relationship of fixed length links; 

4. Solve the nonlinear equations set by Quasi-Newton method (Press et al., 1995). 
From the Eq. (6), the nonlinear equations are 

 ( ) 2 2 2 2
1 2 3, , ( ) 0i i i i if z l A A z Aα β = − − − − = , ( 1, 2, 3i = )  (8) 

where the direct kinematics solutions are z , α  and β . 

2.2.3 Velocity equation 
Eq. (6) can be differentiated with respect to time to obtain the velocity equation. This leads 
to an equation of the form.  

 p q=J p J q   (9) 

where q  is the vector of Cartesian velocities defined as  

  
T

, ,z α β⎡ ⎤= ⎣ ⎦q   (10) 

and p  is the vector of input velocities defined as  

 T
1 2 2[ , , ]z z z=p   (11) 

Matrices pJ  and qJ  are the 3 3×  forward and inverse Jacobian matrices of the mechanism 

and can be expressed as 

 
1 13

2 23

3 33

( ) / 0 0
0 ( ) / 0
0 0 ( ) /

p

z A l
z A l

z A l

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

J    (12) 

 
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

z x y

q z x y

z x y

⎡ ⎤× ×
⎢ ⎥

= × ×⎢ ⎥
⎢ ⎥× ×⎢ ⎥⎣ ⎦

w v w v w
J w v w v w

w v w v w
   (13) 

where iw  is the unit vector of iL , and [ ]1 'i i ℜ=v R A . ( )i zw  is the element of vector iw  with 

respect to z  axis coordinate, ( )i i x×v w  and ( )i i y×v w  are the elements of vector i i×v w  with 

respect to x  and y  axis coordinates. 

2.3 Mechanism accuracy analysis 
When the large spherical radio telescope works, the feed system will illuminate a working 
area, which is the paraboloid reflector with a three-hundred-meter aperture. The part of 
spherical reflector illuminated by the feed is continuously adjusted to fit a paraboloid of 
revolution in real-time, synchronous with the motion of the feed while tracking the object to 
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be observed. For the fitting, the spherical surface reflector is divided into some small 
elementary units. When the mechanisms drive the reflector units to fit the paraboloid, the 
fitting surface of reflector will not match exactly with the nominal paraboloid. Moreover, the 
mechanism has error because of the control or dimensional factor. In this section, the 
mechanism accuracy is analyzed firstly. 
The mechanism accuracy involves the error caused by the actuator input error and the joint 
error of the mechanism. The actuator input error is denoted as [ ]T1 2 3, ,z z zδ δ δ δ=p  and the 

joint error is denoted as 
TT T 18 1( 1,....3)i i R iδ δ δ ×⎡ ⎤= ∈ =⎣ ⎦e A B , where T 9 1( 1,....3)i R iδ ×∈ =B  

includes the joint error on the base platform and the input error [ ]T1 2 3, ,z z zδ δ δ δ=p . The 

output error is denoted as [ ]T, ,zδ δ δα δβ=q .  

From Eq. (5) and (6), the inverse kinematics equation can be written as  

 [ ] [ ] [ ]1 'i i i ilℜ ℜ ℜ
′+ − = =R A o B L w   (14) 

 

Differentiating Eq. (14) leads to 

 q eδ δ δ= +l J q J e     (15)  

where 

 

T T
1 1 1

T T 3 18
2 1 2

T T
3 1 3

0 0 0 0

0 0 0 0

0 0 0 0
e R ×

⎡ ⎤−
⎢ ⎥

= − ∈⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

w R w

J w R w

w R w

  (16) 

and [ ]T1 2 3, ,l l lδ δ δ δ=l , ilδ ( 1,2,3)i =  is the manufacturing or measuring error of the i-th link. 

When qJ  is nonsingular in the workspace, Eq. (15) can be rewritten as 

 ( )1
q eδ δ δ−= −q J l J e    (17) 

3. Fitting accuracy analysis of active reflector 
3.1 One dimensional fitting accuracy analysis 
As shown in Fig. 4, the base active reflector of the radio telescope is a spherical surface with 
five-hundred-meter aperture, and the working reflector is a paraboloid with a three-
hundred-meter aperture. When it works, the reflector units are driven by the parallel 
mechanism from the initial position to the fitting position to fit the paraboloid. Because the 
paraboloid is formed by the revolution of parabola, we can analyze the deviation about 
spherical surface and paraboloid in the reflector frame ''ℜ : '' '' ''o y z− , which is built as 
shown in Fig. 4, where the spherical surface and the paraboloid in the frame ''ℜ  are circular 
arc and parabola, respectively.  
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Fig. 4. Configuration of the active reflector 
 

 
 

 

(a) Initial and fitting position (b) The A direction view of initial position 
Fig. 5. The i-th reflector unit 

Fig. 5 shows one reflector unit which is in the initial position and fitting position, 
respectively. The initial position is located at the base spherical reflector surface. The 
deviation from the circular arc to the parabola is denoted as ijKΔ , and symbol i  represents 
the i-th reflector unit which corresponds to the i-th mechanism. The symbol j  ( 1,2,3)j =  
represents the supporting point of the movable platform. The explanations of other symbols 
used in accuracy analysis are:  

ijA The supporting point while the reflector unit is in the initial position. 

ijA′ The supporting point while the reflector unit is in the fitting position. 

ijC The intersecting points of line ijSA  and the parabola. 

Ai3 

Ai1 
Ai2 

io′

sl 

r 

M 
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io′ The refence center in the movable platform while the reflector unit is in the initial 
position. 

io′′The refence center in the movable platform while the reflector unit is in the fitting 
position. 
S The center of spherical reflector. 
K The radius of spherical reflector. 
F The focal point of the paraboloid. 
The absolute actuator input of the i-th mechanism is specified as ijKΔ ( 1,2,3)j = , while the i-

th active reflector unit is driven to fit the paraboloid. Obviously, the driven reflector unit 
will not match exactly with the nominal paraboloid. In order to evaluate the fitting error, as 
shown in Fig. 5, ieΔ  is defined as the center points deviation of the i-th reflector unit to the 

corresponding paraboloid and ieΔ  is equal to 3i io C′′ , where the center points deviation ieΔ  

is called as one-dimensional fitting error.  

3.1.1 Parabola equation and circle equation 
According to the reference (Qiu 1998), the focal length of the parabola is specified as 
0.476K , then the parabola equation can be written as 

 21
4 0.467

z y
K

′′ ′′=
×

  (18) 

The base spherical surface in reflector coordinate system ''ℜ  is a circle. And the circle 
equation can be written as 

 2 2z K K y′′ ′′= − −    (19) 

3.1.2  Actuator input range 
The coordinate of the point ijA  in the frame ′′ℜ  can be described by the vector ij ′′ℜ

⎡ ⎤⎣ ⎦A  

( 1, 2, 3j = ), then 

 
T

''
,ij ij ijy z

ℜ
⎡ ⎤ ⎡ ⎤′′ ′′=⎣ ⎦ ⎣ ⎦A , ( 1,2,3)j =   (20) 

The equation of straight line ijSA  can be written as 

 
( )ij

ij

z K y
z K

y
′′ ′′−

′′ = +
′′

, ( 1,2,3)j =   (21) 

According to Eqs. (19) and (21), the intersecting point ijC  between line ijSA  and the circle 

can be expressed by vector
''ij ℜ

⎡ ⎤⎣ ⎦C , which is 

 T
''

[ , ]ij cij cijy z
ℜ

⎡ ⎤ ′′ ′′=⎣ ⎦C , ( 1,2,3)j =   (22) 
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Actuator input value of the i-th reflector unit can be written as 

 2 2( ) ( )ij ij cij cijK K SC K y K z′′ ′′Δ = − = − + − , ( 1,2,3)j =   (23) 

3.1.3  One-dimensional fitting error 
When actuator input ijKΔ , ( 1,2,3)j =  is specified, the fitting error ieΔ  can be reached. The 

first step is to calculate the position coordinate [ ] T[ , ]i y z ℜℜ
′′ =o  in the frame ℜ  by the forward 

kinematics solution. The position vector of center point io′′  in the frame ′′ℜ  is written as 

 [ ] [ ] [ ] [ ]T T
2 3 3'' , ,i o i o i i i iy z y z′′ ′′ℜ ℜ

′′ ′′ ′′ ′′ ′′ ′′= = +o R o   (24) 

where 2R  is the rotation matrix about frame ℜ : o yz−  to the frame ℜ : o y z′′ ′′ ′′− , i.e.,  

 2
' '
' '

c s
s c
α α
α α

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R   (25) 

where 1' sin y
K

α − ′′⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Then the fitting error is expressed as  

 2 2 2 2
3 ' ' 3 3( ) ( ) ( ) ( )i i i o i o i ci cie So SC y z K y z K′′ ′′ ′′ ′′ ′′Δ = − = + − − + −   (26) 

 

Since the three-hundred-meter aperture paraboloid is composed of a lot of reflector units, 
we should analysis all the error of reflector units. When the error is studied in the reflector 
frame ''ℜ : '' '' ''o y z−  and the side length of reflector unit is specified, the one-dimensional 
root-mean-square (RMS) fitting error of the paraboloid reflector with three-hundred-meter 
aperture is defined as 

 

2

1Re

n

i
i

e

n
=
Δ

=
∑

  (27) 

3.1.4 One-dimensional accuracy synthesis analysis 
The accuracy synthesis analysis is defined as the composition RMS error that caused by the 
mechanism actuator input error and the fitting error. For the mechanism actuator input 
error has linear relationship with the value of ijKΔ , Eq. (23) can be rewritten as 

 2 2( ) ( )ij ij j cij cij jK K SC z K y z K zδ δ′′ ′′Δ = − + = − + − + , ( 1,2,3)j =   (28)  

 

where jzδ  ( 1,2,3)j =  is the actuator input error. Then Eqs. (24)- (27) can be used to calculate 

the one-dimensional composition RMS error R e′ .  
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3.1.5 Simulation example 
Since the position of supporting point ijA  should be limited in the range of reflector unit, as 

shown in Fig. 5(b), the base plate parameter r  of the parallel mechanism is written as 

 r sl M= −    (29) 

where sl  is the side length of reflector unit and M is the distance from the movable 
platform edge to reflector unit edge. In this work, 0.5M = m and 2R r l= = . 
Since the paraboloid reflector with the 300m aperture is symmetry, the error can be 
analyzed in the range of 150m. Fig. 6(a) shows the one-dimensional fitting error when the 
side length of reflector unit is specified.  
 

  
(a) The fitting error of reflector unit (b) The one-dimensional RMS fitting error 

Fig. 6. The fitting accuracy of active reflector 

According to Eqs. (26) and (28), the one-dimensional RMS fitting error and composition 
RMS error can be drawn as shown in Fig. 6(b) for [ ]1 2 3 max, , [1,1,1]z z zδ δ δ =  mm. In this 

work, we assume that the maximal input error of the mechanism is 1 mm. When the side 
length of reflector unit is equal to 7.5m, the one-dimensional RMS fitting error is 3.75 mm.  

3.2 Two-dimensional fitting accuracy analysis 
 

 
Fig. 7. Two-dimensional fitting error region of the i-th reflector unit 
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As shown in Fig. 5(a), the reflector unit fitting error is a closed region. And section 3.1 only 
considered the one-dimensional error. In this section, the area of the closed region will be 
used to analyze and evaluate the fitting error, which is called as two-dimensional fitting 
error. Obviously, the two-dimensional fitting error will provide more reliable index for us to 
analyzing the fitting accuracy of the large spherical radio telescope. Fig. 7 shows the two-
dimensional fitting error of the i-th reflector unit, which is the sectional region.  

3.2.1 Fitting position circle equation 
When the reflector units are driven by mechanism, the circle arc equation of the i-th reflector 
unit will be changed in the frame ′′ℜ . As shown in Fig. 7, the centre of circle arc 1 3 2i i iA A A′ ′ ′  is 
changed from S  to iS′ . The coordinate of iS′  in the frame ℜ  is written as 

 [ ] [ ] [ ] [ ]T T
1, ,i S i S iy z y z′ ′ ′ℜ ℜ

′ = = +S R S   (30) 

where 

 1
c s
s c
α α
α α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

R , [ ] [ ]0, K′ℜ =S    (31) 

The coordinate of iS′  in the frame ′′ℜ  is written as 

 [ ] [ ] [ ] [ ]T T
2 3 3'' , ,i S i S i i i iy z y z′ ′ℜ ℜ

′ ′′ ′′ ′ ′′ ′′= = +S R S    (32) 

The circle arc equation is changed to 

2 2( )S i S iz K K y y z′ ′′′ ′′ ′′= − − − +  (33) 

3.2.2 Two-dimensional fitting error 
According to the circle arc equation in the frame ′′ℜ , the two-dimensional fitting error can 
be calculated. Firstly, as shown in Fig. 7, one point in parabola is denoted as ( ),C CC y z′′ ′′ , The 
equation of straight line SC  can be written as 

 ( )c

c

z K yz K
y

′′ ′′−′′ = +
′′

   (34) 

According to Eqs. (33) and (34), the intersecting point A  between line SC  and the circle 
arc 1 3 2i i iA A A′ ′ ′ can be expressed by ( ),A AA y z′′ ′′ . The fitting error of given point is expressed as 

 2 2( ) ( )y C A C Ae SA SC y y z z′′ ′′ ′′ ′′ ′′Δ = − = − + −   (35) 

The area of the closed region can be written as 

 2

1

Ci

Ci

y
i yy

Se e dy
′′

′′′′
′′= Δ∫   (36) 
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which is the two-dimensional fitting error of the i-th reflector unit. Then the average error of 
the two-dimensional fitting error is defined as  

 
2 1

i
i

Ci Ci

SeQe
y y

=
′′ ′′−

  (37) 

In the end, the two-dimensional root-mean-square (RMS) fitting error of the paraboloid 
reflector with three-hundred-meter aperture is defined as 

 

2

1

n

i
i

Qe

Qe
R

n
==
∑

    (38) 

where n  is the number of reflector units that consist of three-hundred meter aperture 
parabola. 

3.2.3 Two-dimensional accuracy synthesis analysis 
The two-dimensional accuracy synthesis analysis is defined as the composition RMS error 
that caused by the mechanism actuator input error and the two-dimensional fitting error, 
which is denoted as QeR′ . The Eqs. (28), (37) and (38) can be used to calculate the two-

dimensional composition RMS fitting error QeR′ .  

3.2.4  Simulation example 
The two-dimensional RMS error and composition RMS fitting error are shown in Fig. 8, 
where all the dimensional design parameters are the same as the specified parameters in 
section 3.1.5. Comparing the Fig. 8 and Fig. 7, we can know although both the one-
dimensional and two-dimensional RMS fitting error increase while the side length of 
reflector unit increases, the two-dimensional RMS error is larger than one-dimensional RMS 
error. 
 

 
Fig. 8. The two-dimensional RMS fitting error of active reflector 
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According to the fitting error requirement given by reference (Qiu, 1998), when the highest 
working frequency of the radio telescope is 5GHz, the reflector RMS fitting error should be 
less than 3.75 mm. Now, we can decide the dimensional parameters and guarantee the 
implementation of the working frequency by the one-dimensional or two-dimensional RMS 
fitting error curves. For example, according to the Fig. 7, if the side length of reflector unit is 
specified as 7.5m, the specified dimension of reflector units can satisfy the requirement of 
5GHz work frequency. However, as shown in Fig. 8, if the two-dimensional RMS fitting 
error is used to evaluate the fitting accuracy, the side length of reflector unit should less than 
7.0m for satisfying the requirement of 5GHz work frequency. 

4. The error kinematics of 3-PRS mechanism 
3-PRS mechanism has less chians which reduces its cost. The kinematics of 3-PRS 
mechanism has been fully analyzed (Carretero et al., 1997; Tsai & Shiau, 2003). Yet, when the 
mechanical manufacturing and assembling errors are brought into the model, kinematic 
analysis will become complicated. Therefore, analysis on parasitic motion and accuracy 
should be made to guarantee the application of 3-PRS mechanism as reflector unit 
supporting mechanism. 

4.1 Kinematic modeling with errors 
The magnitude of the reflector driving machine is always at meter, so input error, length 
error of the legs and location error of the spherical joint have little influence on motion error 
of the moving platform. On the other hand, the location and angle error of the rotational 
joint, which will be extended by the legs, will mix with parasitic motion so as to greatly 
affect the motion. Therefore, we introduces angle error of the rotational axis and location 
error of the joint point in the rotational joint as the main error resources in order to analyze 
kinematics of 3-PRS error model. 
 

z′

iP

iB i′B

i′P

iA

o
x

y
z

o′ x′

y′

H

platformMoving

Base platform
 

i′B

iB

iP

i′P
iΔB

iΔP

 

(a) (b) 

Fig. 9. Kinematic error model of 3-PRS mechanism 

 In the error model representation of 3-PRS mechanism, as shown in Fig. 9(a), iP  is ideal 
axis vector of the rotational joint, and i′P  is actual axis vector with angle error. Similarly, iB  
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is ideal vector of the rotational joint point, whereas i′B  is actual joint point vector with 
location error. Both i′P  and i′B  include three direction errors separately along x  , y , and z  
axis, which means that there are six errors in each leg, as shown in Fig. 9(b), in which two-
dot chain line represents ideal rotational joint and real line represents actual one. 
The location error vector of the rotational joint is defined as 

T
i ix iy izb b b⎡ ⎤Δ = Δ Δ Δ⎣ ⎦B  

The angle error vector of the rotational joint is defined as 

T
i ix iy izp p p⎡ ⎤Δ = Δ Δ Δ⎣ ⎦P  

Then we can find 

 i i i′ = + ΔB B B   (39) 

 i i i′ = + ΔP P P   (40) 

The three components of the vector iΔB  are independent while those of the vector iΔP  are 
not since the error on the direction can be given through two parameters only. So the 
relationship between the components of the vector iΔP  can be determined by || || 1i i+ Δ =P P , 

where '|| || || || 1i i= =P P  are unit direction vectors. Thus, error resources are appropriately 
introduced and error modeling of 3-PRS mechanism is completed. 

4.2 Inverse kinematics 
The coordinate axes of the inertial frame fixed on the base platform are denoted by 
ℜ : o xyz−  while those of the moving frame fixed on the moving platform are denoted by 
′ℜ : o x y z′ ′ ′ ′−  (see Fig. 9). In order to simplify the kinematic model, the origin of the inertial 

frame is located on the center of the base platform and x  axis of the inertial frame points to 
one of the spherical joint on the base platform. The y  axis is also on the plane of the base 
platform while z  axis points upward forming a right-handed orthogonal frame. The 
coordinate axes of the moving frame are also located on the moving platform in the same 
way. The rotation matrix from the coordinate axes of the moving platform to those of the 
base platform is denoted by R  which is expressed as 

-
-

-

c c c s s s c c s c s c
s c s s s c c s s c c s

s c s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ

+⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

R  

where ψ , θ , and φ  are variables which orderly specify the rotations around the x  , y , 
and z  axis, and s represents sin, while c represents cos. 

[ ] [ ]Tx y z
ℜ
=H  is the vector from the origin of the inertial frame to the origin of the 

moving frame expressed in the inertial frame. 
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[ ]i ℜB  is the vector iB  expressed in the inertial frame. 

[ ]i ℜ
′B is the vector i′B  expressed in the inertial frame. 

[ ] [ ]T1 2 0i i ip p
ℜ
=P  is the vector iP  expressed in the inertial frame. 

[ ]i ℜ
′P  is the vector i′P  expressed in the inertial frame. 

[ ] [ ]T1 2 0i i ia a′ℜ
=A  is the vector from the origin of the moving frame to the i-th upper 

attachment point expressed in the moving frame. 
[ ]i ℜ
L  is the vector from the rotational point to the upper attachment point of the i-th leg. It 

should be noted that [ ]i ilℜ
=L  is constant for each leg. 

T
1 2 3( , , )S S S=S  is the set of actuated joint variable of the 3-PRS mechanism which is the 

height of the rotational joint point. We can get 

[ ] [ ]T1 2i i i ib b S
ℜ
=B  

The inverse kinematic problem is supposed to determine the value of the actuated variables 
for a known position and orientation of the end-effector, that is: ( , , , , , )x y z ψ θ φ=S f . 
In those six variables, the known numbers are three desired motions which include z , ψ , 
and θ , while the unknown numbers are three parasitic motions which include x , y , and 
φ . The parasitic motions are determined by the target motions, that is: ( , , ) ( , , )x y zφ ψ θ= g . 
The structure of mechanical joint leads to two geometrical constraints which are rotation 
constraint and length limitation of the leg. 
(a) The rotation constraint 
Each attachment point of the moving platform should be restricted in the rotation plane 
formed by the wheeling leg. The constraint equations are 

 [ ] [ ] [ ]T ( ) 0i i iC′ℜ ℜ ℜ
′ + + =P R A H , 1,2,3i =   (41) 

where iC  is a constant of the rotation plane and determined by the following equation 

 [ ] [ ]T 0i i iC
ℜ ℜ
′ ′ + =P B , 1,2,3i =   (42) 

Substituting Eq. (39) into Eq. (42) 

 [ ] [ ] [ ] [ ]T( ) ( ) 0i i i i iC
ℜ ℜ ℜ ℜ
+ Δ + Δ + =P P B B    (43) 

Expressing with the elements of those vectors, we get 

 0i i i im S C n+ + =   (44) 

where 

i izm p= Δ , 1 1 2 2 1 2 1 2i i i i i ix i iy i i ix i iy ix ix iy iy iz izn p b p b p b p b p b p b p b p b p b= + + Δ + Δ + Δ + Δ + Δ Δ + Δ Δ + Δ Δ  

Substituting Eq. (40) into Eq. (41) 
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 [ ] [ ] [ ] [ ]T( ) ( ) 0i i i iC′ℜ ℜ ℜ ℜ
+ Δ + + =P P R A H   (45) 

Expressing with the elements of those vectors, we get 

 0i i i i i if c g s h x k y j Cφ φ+ + + + + =   (46) 

where 

1 1 2 1 2 2 1 2 2

2 1 1 2 2 2 2 1 2

1 2 1 2, , ( )

i i i i i i i i ix i ix i iy

i i i i i i i i ix i iy i iy

i i ix i i iy i iz i i

f a p c a p s s a p c a p c a p s s a p c

g a p c a p c a p s s a p c a p c a p s s

h p p k p p j p a s a c s z

θ θ ψ ψ θ θ ψ ψ

ψ θ θ ψ ψ θ θ ψ

θ θ ψ

= + + + Δ + Δ + Δ

= − + + − Δ + Δ + Δ

= + Δ = + Δ = Δ − + +

 

 

(b) The leg limitation 
The distance between the attachment point of the moving platform and the rotational point 
of the rotational joint should be constant. The constraint equations are 

 [ ] [ ] [ ] [ ]i i i il′ℜ ℜ ℜ ℜ
′+ − = =R A H B L , 1,2,3i =    (47) 

Substitute Eq. (39) into Eq. (47) 

 [ ] [ ] [ ] [ ]( )i i i il′ℜ ℜ ℜ ℜ
+ − + Δ =R A H B B   (48) 

Expressing with the elements of those vectors, we get 

 2 2 2
i i i i iS l u v w= ± − − +   (49) 

where 

1 2 2 1

1 2 2 2

1 2

i i i i i ix

i i i i i iy

i i i iz

u a c c a c s s a s c x b b
v a s c a s s s a c c y b b

w a s a c s z b

φ θ φ θ ψ φ ψ
φ θ φ θ ψ φ ψ

θ θ ψ

= + − + − − Δ

= + + + − − Δ

= − + + − Δ

 

 

In Eq. (49), there are two possible solutions for each leg, thereby yielding a total of 8 possible 
combinations of actuated height for a given position and orientation. In the present work, 
the negative square root is always selected to yield a solution where the legs are always 
beneath the moving platform.  
Combining Eqs. (44) and (46), we get 

 c s 0i i i i i i i if g h x k y j m S nφ φ+ + + + − − =   (50) 

Combining Eqs. (49) and (50), we get equations set involved with variables iS  and three 
parasitic motions. We can find that if 0i izm p= Δ = , Eqs. (49) and (50) can be solved 
separately. But in ordinary condition, 0i izm p= Δ ≠ , direct solution of the equations set will 
become impossible. 
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4.3 Arithmetic of inverse solution 
In order to figure out the nonlinear equations set with the normal condition of 0izpΔ ≠ , a 
numerical iterative arithmetic is proposed as follows: 

1. Decide the initial value of the actuated height 0S and set the loop variable 0i = ; 
2. Calculate the parasitic motions of the moving platform according to Eq. (50) 

with iS ; 
3. Then calculate 1i+S  according to Eq. (49); 
4. If 1i i ε+ − <S S , where ε  is the acceptable error limitation, end up iterative 

calculation with solution of 1i+S . Otherwise, 1i i= + , then turn back to step 2. 

4.4 Forward kinematics 
Forward kinematic solution is supposed to determine the position and orientation of the 
end-effector for known actuated variables. Since we already have the inverse kinematics, 
Similarly with the method used in setion 2.2.2, we can also get forward solution. 

5. Three-dimensional fitting accuracy analysis 
5.1 Coordinate description for calculation 
As shown in Fig. 10(a), the paraboloid of revolution covers a spherical surface with a 300-
meter aperture, which has a coning angle of 60 degree. The paraboloid moves on the sphere 
to track the object in real-time. Since the axial line of the desired paraboloid always orients 
to the center of the base spherical surface when it works, the fitting accuracy is constant at 
any time when the paraboloid of revolution is at any location on the base spherical surface. 
Thus analysis of Fig. 10(a), where the peak of the paraboloid of revolution is located on the 
bottom of the base spherical surface, will be enough. 
In Fig. 10(a), the global coordinate axes of the inertial frame fixed on the whole active 
reflector system are denoted by gℜ : g g g go x y z− . The origin of the coordinate system gℜ  is 
located on the bottom of the base sphere while the g g gx y z  plane is the tangent plane of the 
point go .  
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Fig. 10. Active spherical reflector and fitting paraboloid: (a) profile; (b) top view 
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Fig. 10(b) is a top view of base sphere along radial direction. The gx  axis is perpendicular 
with the side of the regular hexagon reflector unit. Fig. 10(b) shows the location of the three 
attachment points and twenty four sampling points for calculation. It is noted that the upper 
surface of the reflector unit is spherical which means that the sampling points are all on a 
spherical surface whose radius is K . 
As shown in Fig. 11, the coordinate axes of the inertial frame fixed on the platform in initial 
position are denoted byℜ : o xyz− , in which the location of the axes is similar with the 
location in the kinematic analyses introduced in setion 4.1. The inertial frame is not moving 
with the reflector unit. Since the reflector unit in initial position is the tangent plane of the 
base sphere, z  axis always points to the center of the sphere. It should be noticed that the 
directions of x  axis and y  axis in the coordinate frame o xyz−  is different from those in 

g g g go x y z− . Similarly, the coordinate axes of the moving frame fixed on the platform in 
fitting position and orientation are denoted by ′ℜ : o x y z′ ′ ′ ′− . The coordinate frame ℜ  and 
′ℜ  are similar with the kinematic inertial and moving frame analyzed in section 4 so that 

the inverse and forward solution can be used. 
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Fig. 11. One reflector unit in initial and fitting position 

We can divide the surface by several circular arcs. These arcs are intersections of the base 
sphere and the planes which are parallel with g g gx y z  plane, and are all through the centers 
of the reflector units. So the fitting accuracy of all reflector units can be calculated along 
these arcs. 
For analyses, the symbols used in the Fig. 10 and 11 are defined as 

iA  is the i-th attachment on the reflector unit. 
C  is the center of the base sphere. 
K  is the radius of the base sphere. 
F  is the focal point of the ideal paraboloid of revolution. 
sl  is the side length of the reflector unit. 
M is the distance from each attachment to the border of the reflector unit on radial 
direction. 
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tji ℜ
⎡ ⎤⎣ ⎦A is the vector from the origin of ℜ  to iA  on the ( , )t j  reflector unit in the initial 

position expressed in the inertial frame ℜ  (the subscript t , j  mean the j-th reflector unit 
on the t-th circular arc, the same as below). 

gtji ℜ
⎡ ⎤⎣ ⎦A is the vector from the origin of gℜ  to iA  in the initial position expressed in the 

global inertial frame gℜ . 

tjk ′ℜ
⎡ ⎤⎣ ⎦G is the vector from o′  to the k-th sampling point in the fitting position expressed in 

the moving frame ′ℜ , so tjk ′ℜ
⎡ ⎤⎣ ⎦G  is constant and known. 

tjk ℜ
⎡ ⎤⎣ ⎦G  is the vector from o  to the k-th sampling point in the fitting position expressed in 

the inertial frame ℜ . 

gtjk ℜ
⎡ ⎤⎣ ⎦G  is the vector from go  to the k-th sampling point in the fitting position expressed in 

the inertial frame gℜ . 

gtj ℜ
⎡ ⎤⎣ ⎦H is the vector from go  to o  expressed in the inertial frame gℜ  which is determine 

by the position of current analyzing reflector unit. 
T( , , )tj x y z

ℜ
⎡ ⎤ =⎣ ⎦H is the vector from o  to o′  expressed in the inertial frame ℜ . 

tjR is the rotation matrix from coordinate frame ℜ  to gℜ . 

tj′R  is the rotation matrix from  coordinate frame ′ℜ  to ℜ . 
T

1 2 3( , , )tj tj tj tjS S S=S  is the actuated joint variable. 

tjiSΔ  is the increment of the actuated variable of the i-th leg from the initial position to the 

fitting position. 
tjilΔ  is the distance between the i-th attachment in the initial position and the paraboloid of 

revolution on radial direction. 
( , , )zψ θf  is inverse solution which is analyzed in section 4 with output of T

1 2 3( , , )S S S . 

1 2 3( , , )S S S-1f is forward solution with output of T( , , , , , )x y z ψ θ φ . 

5.2 Paraboloid equation and circle equation 
The focal length of the paraboloid is specified as 0.467K, then the paraboloid equation can be 
written as 

2 21 ( )
4 0.467

g g gz x y
K

= +
×

 

The distance from one point T
0 0 0( , , )g g gx y z  to the paraboloid on radial direction is 

T T
0 0 0( , , ) ( , , )g g g g g gl x y z x y zΔ = −  

where 
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2 2
2 20 0

2 2 2 2
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0
0

0
0
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g g
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z K K z K Kz K K K
x y x y
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− × − ×
= + − + −

+ +

−
=

−

−
=

−

 

 

By combining the equations above, we define the function to calculate distance between one 
point T

0 0 0( , , )g g gx y z  and the paraboloid on radial direction as 

T
0 0 0(( , , ) )g g gdis x y z l= Δ  

5.3 Driving strategy 
Driving strategy determines the method to drive the reflector unit to fit for paraboloid. In 
order to simplify calculation, the actuated variable tjS  is the value of actuated variable in 

initial position plus tjilΔ . 

5.4 Fitting accuracy calculation 
Calculating the number of the arcs in the half base sphere of positive gy  axis surface, we 
get: 

 ( )
9
Km ceil

sl
π

=    (51) 

where ( )ceil x means the least integer which is no less than x . 
The radius of the t-th arc is written as 

 cos(3 2 )tK K t sl K= ⋅   (52) 

The meeting point of the t-th arc to the border of the base sphere is written as 

 2 2( 2) ( sin(3 2 ))g
tx K K t sl K= − ⋅   (53) 

Thus the length of the t-th positive half circular arc is written as 

 sin( )g
t t t tal K arc x K=    (54) 

So the number of reflector units on the positive half t-th arc can be obtained as 

 ( 3 )t tn ceil al sl=   (55) 

First, we focus on the coordinate frame ℜ  and gℜ . The equation of the base sphere is 
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2 2 2 2( )g g gx y z K K+ + − =  

or 

2 2 2g g gz K K x y= − − −  

So that along the arc of even number, the position of the j-th reflector unit on the t-th arc can 
be written as 

sin( 3 )g
tj t tx K j sl K= ⋅ , sin(3 2 )g

tjy K t sl K= ⋅ , 2 2 2g g g
tj tj tjz K K x y= − − −  

While along the arc of odd number, the g
tjx  is 

sin( 3( 0.5) )g
tj t tx K j sl K= +  

Thus position of the coordinate frame ℜ  which is fixed on the reflector unit in the initial 
position is determined by 

 T( , , )g

g g g
tj tj tj tjx y z

ℜ
⎡ ⎤ =⎣ ⎦H    (56) 

According to the orientation of the coordinate frame ℜ , the rotation matrix to gℜ  can be 
written as 

 
2 2

( , sin( )) ( ,90)
g g
tj tj

tj tj
x y

Rot arc Rot z
K
+

=R p    (57) 

where ( , )Rot a b  is rotation matrix of rotating angle of b  degree around vector a , and tjp  is 

rotating vector in g g go x y  plane which is expressed as 

2 2 2 2 T( , ,0)g g g g g g
tj tj tj tj tj tj tjy x y x x y= + − +p  

The vector of sampling point can be written as 

 g gtjk tj tjk tjℜ ℜ ℜ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦G R G H   (58) 

while the vector of the upper attachment in the initial position can be written as 

 g gtji tj tji tjℜ ℜ ℜ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦A R A H    (59) 

Then, we focus on the coordinate frame ′ℜ  and ℜ . The value of actuated variable should 
be determined for the ( , )t j unit. According to the driving strategy, the actuated variable of 
the reflector unit in fitting position can be obtained as 

 T
0 1 2 3( , , )tj tj tj tjl l l= + Δ Δ ΔS S   (60) 
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where 0 (0,0,0)=S f  is the initial value of the actuated variable and ( )gtji tjil dis
ℜ

⎡ ⎤Δ = ⎣ ⎦A . 

According to forward solution, the Cartesian variables which specify the position and 
orientation from the coordinate frame ′ℜ  to the inertial frame ℜ  can be obtained as 

 T( , , , , , ) ( )tjx y z ψ θ φ = -1f S    (61) 

 T( , , )tj x y z
ℜ

⎡ ⎤ =⎣ ⎦H     (62) 

 
c c c s s s c c s c s
s c stj

c
s s c c s s c c s

s c s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ

− +⎡ ⎤
⎢ ⎥′ = + −⎢ ⎥
⎢ ⎥−⎣ ⎦

R    (63) 

 

The vector of the k-th sampling point expressed in inertial frame ℜ  can be obtained by 

 tjk tj tjk tj′ℜ ℜ ℜ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤′= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦G R G H     (64) 

 

Finally, we calculate the fitting accuracy based on the results obtained above. The fitting 
accuracy of one sampling point on the j-th reflector unit in the t-th arc can be written as 

 ( )g
tjk tjke dis= G    (65) 

Synthetically, substituting Eqs. (56)-(64) into (65), we can calculate tjke  with specified t, j and 
k as 

2 2

( ( , sin( )) ( ,90)( ) ( , , ) )
g g
tj tj g g g T

tjk tj tj tjk tj tj tj tj
x y

e dis Rot arc Rot z x y z
K ′ℜ ℜ

+
⎡ ⎤ ⎡ ⎤′= + +⎣ ⎦ ⎣ ⎦p R G H  

 

The RMS fitting accuracy on the whole fitting surface can be written as 

24
2

1
( ) (24 (2 1))

t

t

nm m

RMS tjk t
t m j n k t m

E e n
=− =− = =−

= +∑ ∑ ∑ ∑  

5.5 Driving strategy optimization 
In order to reduce the RMS fitting accuracy of the whole reflector, the current driving 
strategy should be optimized. Considering the real-time compensation, the optimization 
algorithm should be no more difficult than the current strategy.  
According to the analyses above, we put forward one modified driving strategy as 

 T
0 1 2 3 1 2 3( , , ) (3 ( ) ) / 6gtj tj tj tj tj tj tj tjl l l dis l l l

ℜ
⎡ ⎤= + Δ Δ Δ + − Δ − Δ − Δ⎣ ⎦S S H   (66) 
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The strategy will compensate the actuated variable of each reflector unit with the algebraic 
average among three supporting points and the center of the reflector so as to get less RMS 
fitting accuracy on each unit spherical surface. 

5.6 Simulation example 
Fig. 12(a) shows the fitting accuracy on the whole reflector range with and without 
optimized driving strategy when the side length is changeable, which are respectively 
expressed as O

RMSE  and RMSE . All the dimensional design parameters are the same as the 
specified parameters in section 3.1.5. 
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Fig. 12. The three-dimensional fitting accuracy of active reflector 

As shown in Fig. 12(a), the fitting accuracy is reduced approximately by 40% when the 
driving strategy is optimized. Fig. 12(b) shows the fitting accuracy on the whole reflector 
range with and without errors when the optimized driving strategy is used, which are 
respectively expressed as O

RMSE ′  and O
RMSE . In this work, we assume that the axis angle 

tolerance of the rotational joint is [0,0.2 ]   and the position tolerance is  [ 10 ,10 ]mm mm− , and 
O
RMSE ′  is the worst situation with these tolerances.In order to guarantee the working 

frequency of the large radio telescope, the side length of the reflector unit should be less 
than 7.3mm. 

6. Conclusion and future works 
In order to guarantee the usage of active reflector and achieve the highest working 
frequency requirement, 5GHz, in FAST, fitting accuracy of the active reflector is supposed to 
be analyzed. In this chapter, a novel 3 DOFs parallel mechanism, 3-PSS with constraint leg, 
is proposed. This mechanism can fulfill the required movement to fit a paraboloid of 
revolution for the active reflector. The kinematics of 3-PSS+C mechanism is studied. Based 
on that, the one and two-dimensional fitting accuracy are calculated and the side length 
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limit of reflector units is evaluated as 7.0m. However, due to more expensive cost of the 
extra constraint chain, 3-PSS+C is not very appropriate as reflector supporting mechanism. 
So 3-PRS mechanism becomes more attractive and deserves to pay more attention. Then 
error kinematics with rotational joint tolerance is analyzed for actual application. Based on 
that, three-dimensional fitting accuracy is calculated with optimized driving strategy, and 
the side length limit turns out to be 7.3m. 
The future work will still focus on the fitting accuracy not only on kinematics, but also on 
synthetical design, stiffness and control, as well as sharing strategy study. Further more, 
experiment research will be taken into account as certification for the theoretical analysis. 
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1. Introduction 
Reconfigurable robots consist of many modules which are able to change the way they are 
connected. As a result, these robots have the capability of adopting different configurations 
to match various tasks and suit complex environments. For mobile robots, the 
reconfiguration is a very powerful ability in some tasks which are difficult for a fixed-shape 
robot and during which robots have to confront unstructured environments (Granosik et al. 
2005; Castano et al. 2000), e.g. navigation in rugged terrain. The basic requirement for this 
kind of robotic system is the extraordinary motion capabilities. 
In recent years considerable progress has been made in the field of reconfigurable modular 
robotic systems, which usually comprise three or more rigid segments that are connected by 
special joints (Rus, D. and Vona, M. 2000). One group of the reconfigurable robots featuring 
in interconnected joint modules realizes the locomotion by virtue of the structure transform 
performed by the cooperative movements and docking/undocking actions of the modules 
(Suzuki et al. 2007; Kamimura et al. 2005; Shen et al. 2002; Suzuki et al. 2006; Vassilvitskii et 
al. 2002). Because the modules in these robots are not able to move independently and the 
possible structures of the robot are limited, these kinds of robots are not suitable for the field 
tasks. 
The other kind of reconfigurable robots being composed of independently movable modules 
is more suitable for the field environment. The first prototype (Hirose et al. 1990) with 
powered wheels was designed by Hirose and Morishima in 1990, which consists several 
vertical cylindrical segments. The robot looks like a train, however with a weight over 300 
kg it is too heavy. Klaassen developed a mobile robot with six active segments and a head 
for the inspection of sewage pipes (Klaassen et al. 1999). There are twelve wheels on each 
module to provide the driving force. Mark Yim proposed another reconfigurable robot 
PolyBot which is able to optimize the way its parts are connected to fit the specific task (Yim 
et al. 2000). PolyBot adopts its shape to become a rolling type for passing over flat terrain, an 
earthworm type to move in a narrow space and a spider type to stride over uncertain hilly 
terrain. 
The application of powered tracks to field robots enriches their configurations and improves 
the adaptability to the environments. A serpentine robot from Takayama and Hirose 



 Parallel Manipulators, Towards New Applications 

 

348 

consists of three segments. Each segment is driven by a pair of tracks, but all tracks are 
powered simultaneously by a single motor located in the centre segment (Takayama et al., 
2000). The special ability of adapting to irregular terrain is passive and provided by springs. 
The OmniTread serpentine robot (Granosik et al. 2005) for industrial inspection and 
surveillance was developed by Grzegorz Granosik in 2004. Optimal active joints are 
actuated by pneumatic cylinders in order to compromise the strength and compliance. 
However, the known robots usually have few configurations due to relatively simple 
docking and pose-adjusting mechanisms. For example, the Millibot Train robot consists of 
seven compact segments, which can connect by couplers with one DOF (Brown et al. 2002). 
A reconfigurable mobile robot designed by M. Park is not able to change its configuration 
actively at all (Park et al. 2004). The robot from Université Libre de Bruxelles has a one-DOF 
pose-adjusting mechanism and one coupler to change the configuration between the 
neighboring modules as well (Sahin et al. 2002). 
From the mechanical point of view, the reconfiguration mechanism applied to mobile robot 
is composed of the posture-adjusting and connecting mechanism, and the most important 
technology is how to construct a posture-adjusting mechanism with large workspace and 
high driving ability in a limited robot body. However, in complex field terrain, the fact that 
the existing reconfigurable mobile robots can only assume limited configurations due to 
relatively simple posture-adjusting is a ubiquitous deficiency. 
The project presented in this chapter aims at developing a reconfigurable mobile multi-robot 
platform made highly flexible and robust by its three-DOF posture-adjusting ability. The 
key object of the project is to develop a new posture-adjusting mechanism featuring in 
compact structure, large workspace and powerful driving ability. As a secondary object, the 
project has developed an effective connecting mechanism aligned to flat terrain and 
synthesized it with the posture-adjusting mechanism. The locomotion abilities of the system 
are expected to be as follows. 
1. The single robots in the system have an independent omni-directional locomotion 

ability equivalent to that of a normal outdoor mobile robot. 
2. Due to the posture-adjusting mechanism, which enables the robots to drive very well 

and to operate in a large workspace, the robots can adjust the posture of their partners. 
3. The connecting mechanism tolerating large posture deviation in flat terrain can link two 

robots in a locked connection and transit large forces and torques between them. 
4. Compared with a single robot, the connected robots are able to perform more 

demanding locomotion activities, such as stepping over high obstacles, crossing wide 
grooves, passing through narrow barriers and self-recovering from invalid postures 
and other actions which are impossible for a single robot. 

To reach the above targets, a novel reconfigurable mobile robot system JL-1 based on a serial 
and parallel active spherical mechanism and a conic self-aligning connecting mechanism has 
been developed. This system is composed of three robot modules which are able to not only 
move independently, but also to connect to form a chain-structured group capable of 
reconfiguration. On flat terrain, each module of JL-1 can corporate with each other by 
exchanging information to keep up its high efficiency; while on rugged terrain, the modules 
can actively adopt a reconfigurable chain structure to cope with the cragged landforms 
which will be a nightmare for a single robot (Zhang et al. 2006; Wang et al. 2006). 
In the chapter, after giving an overview of JL-1, the discussion focuses on some special 
locomotion capabilities of it. Then the related kinematics analysis of the serial and parallel 
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mechanism is discussed thoroughly as well as the theory of the connecting mechanism. 
Based on the discussion, the mechanical realization of JL-1 is introduced in detail. The 
prototype shows the advantage of the parallel mechanism in realizing powerful driving 
force in a relative small size. In the end, a series of successful on-site tests, such as crossing 
high vertical obstacles, connecting action and getting self-recovery when the robot is upside-
down, is presented to confirm the above principles and the locomotion abilities of JL-1. 

2. Overview of the reconfigurable JL-I 
2.1 Mechanical model of JL-1 
 

 
Fig. 1. Adapting to terrains by pitching, yawing and rotating 

By virtue of three uniform modules being capable of docking with each other, JL-I has 
various moving modes which enable JL-1 to move in almost all kinds of rough terrains. The 
principle of terrain adaptability is shown in Fig. 1. In connected state, JL-I can change its 
posture by pitching around the Y axis, yawing around the X axis and rotating around the Z 
axis. JL-1 is endowed with the abilities of adopting optimized configurations to negotiate 
difficult terrains or splitting into several small units to perform tasks simultaneously, by the 
three DOF active spherical joints between the modules and the docking mechanism being 
capable of self-aligning within certain lateral and directional offsets. 
In JL-1, the yawing and pitching movements are achieved by a parallel mechanism. The 
third rotation DOF around the joint’s Z axis is achieved by a serial mechanism. There are 
two reasons for using the serial and parallel mechanisms for JL-1. Firstly, the JL-I robot can 
be made lightweight and dexterous while allowing for a larger payload. Secondly, the 
advantages of the high rigidity of a parallel mechanism and the extended workspace of a 
serial mechanism can be combined, thus improving the flexibility of the robotic system. 

2.2 Locomotion capabilities 
It can be easily imagined that the locomotion abilities of JL-1 will be enhanced when it is in 
connected state, such as climbing up higher steps, spanning wider ditch and stepping up 
stairs. Furthermore, JL-1 is capable of some novel actions, which will be required in outdoor 
environment, e.g. self-recovery and passing through a narrow fence. 
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2.2.1 90° self-recovery 
It is possible for the robot to implement a 90° recovering movement by adopting the proper 
configuration sequence as shown in Fig. 2.  
a) The robot is lying on its side  
b) The first module and the last module are yawing up around the X axes of the active 

joints. 
c) Then the first module and the last module rotate 90° around the Z axes. 
d) After that, they are pitching down around the Y axes of the active joints until they 

attach to the ground in order to raise the middle module up. 
e) The middle module rotates around the Z axis until it is parallel to the ground. 
f) In the end, the module is pitching down around the Y axes of the active joints until all 

three modules attach to the ground together. The robot is now in its home state again, 
and the process of 90° Self-recovery is over. 

 

 
Fig. 2. 90° recovering movement 

2.2.2 180° Self-recovery 
It is also possible for the robot to tip over and realize the 180° recovery movement as shown 
in Fig. 3. 
 

 
Fig. 3. 180° recovering movement 
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a) The robot is in its home state. 
b) The first and the last modules are pitching down around the Y axes of the active joints 

until the middle module is in the air. 
c) The middle module rotates 180° according to the Z axis. 
d) The first module and the last module are pitching down around the Y axes of the active 

joints until the middle module attaches to the ground. 
e) The first module and the last module are pitching up around the Y axes of the active 

joints again. 
f) The first module and the last module are rotating 180° around the Z axes of the active 

joints. 
g) Then the first module and the last module are pitching down around the Y axes of the 

active joints again until all three modules attach to the ground. 
h) The process of 180° Self-recovery is over. 

2.2.3 Crossing a narrow fence 
As shown in Fig. 4, the train configuration robot is able to cross a fence narrower than the 
width of its modules. 
a) The robot is in its home state, and the sensor detects the fence in the moving direction. 
b) The robot stops before the fence, and then the first module pitches up around the Y axis 

and then rotates 90° according to the Z axis. 
c) The crossing movement does not stop until the first module passes through the fence. 
d) The first module rotates and pitches to get back into the home state, and then the three 

modules attach to the ground together again. 
The following steps (e) to (k) of the second and third modules are similar to those of the first 
one. The process will be achieved until the robot crosses the fence entirely. In order to show 
the principle clearly, the lateral views of steps (e) and (f) are also given. 
 

 
Fig. 4. The sequence of crossing a narrow fence 
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3. Kinematics analysis of the active spherical joint 
As described above, the robot’s reconfiguring abilities are achieved by the motion of the 3 
DOF active spherical joints. Two of the DOF achieved by the parallel mechanism are yawing 
and pitching around the joint’s X and Y axes respectively. The third rotation DOF around 
the joint’s Z axis is achieved by the serial mechanism. 
 

 
Fig. 5. The kinematics model of the active spherical joint 
To demonstrate the reconfiguring possibility, the kinematics analysis of two connected 
modules should be studied first. Fig. 5 shows the kinematics model of the joint between two 
modules. Where OXYZ is the world coordinate fixed at the plane QEF which represents the 
front unmovable module during the reconfiguration. The origin is located at the universal 
joint O, the Z-axis coincides with the axis of the serial mechanism and the X-axis points to 
the middle point of line AB. Another reference coordinate O’X’Y’Z’ is fixed at triangular 
prism OABPCD which represents the back moveable module. The O’X’Y’Z’ is coincident 
with the OXYZ when the spherical joint is in its home state. Equations (1) and (2) are 
satisfied due to the mechanical constraints. QF is perpendicular and equal to QE. 

 QEF//OAB//PCD  (1) 

 QEF=OAB=PCD   (2) 

The required orientation for the reference frame O’X’Y’Z’ on the back module is achieved by 
a rotation of θz, a pitching angle θy and a yawing angle θx according to the relative axes. 
From the mechanical point of view, actually the pitching and yawing motions are realized 
by the outstretching and returning movement of the L1, L2 of the parallel mechanism, and 
the rotation of θz is actuated by the serial mechanism. The freedom of the reconfiguring 
movement is three and can be described with the generalized coordinate θ (3). The joint 
variants of the movement are named q, described as (4). 

 θ= [θx, θy, θz]T    (3) 

 q= [L1, L2, θz]T   (4) 

The purpose of the kinematics analysis is to deduce the relationship between q and θ. In Fig. 
10, the points A, B, C, D are described as (5) in the OXYZ coordinate. 
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The homogeneous transformation matrix [T] from the world coordinate OXYZ to the 
coordinate O’X’Y’Z’ is described as (6). 
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After the reconfiguring movement, A, B, C, and D are changed to new positions described as 
A1, B1, C1, and D1. The Cartesian coordinates of the new points can be expressed as (7) and 
(8). 

 ])[(][ 11 BAZRotBA =   (7) 

 [ ] [ ]DCTDC =11   (8) 

There are some constraints to the mechanical structure, as shown in (9) and (10). The lengths 
of the link L1 and L2 are equal to the distance between C1A1 and D1B1 respectively. 

 111 ACL −=   (9) 

 112 BDL −=    (10) 

All these results are inserted into (9) and (10), then the kinematics expression results from 
them. 
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Named TL1=L11/2, TL2=L21/2, then the relation between q and θ can be concluded as (13). 

 q = [TL11/2, TL21/2, θZ]T  (13) 

The relationship of the world coordinate and the reference joint coordinate can be 
concluded. Furthermore the movements can be anticipated according to the joints’ driving 
outputs. 
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4. System realization 
4.1 Mechanical realization 
The JL-I system consists of three connected, identical modules for crossing grooves, steps, 
obstacles and traveling in complex environment. The mechanical structure is flexible due to 
its uniform modules and special connection joints (Fig. 6a). Actually each module is an 
entire robot system that can perform distributed activities (Fig. 6b).  
 

 
(a)                                                                       (b) 

Fig. 6. The robotics system of JL-I 
 

 
Fig. 7. An artistic impression of the module 
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The single module is about 35 centimeters long, 25 centimeters wide and 15 centimeters 
high. Fig. 7 shows the mechanical structure of the module which has two powered tracks, a 
serial mechanism, a parallel mechanism, and a docking mechanism. Two DC motors drive 
the tracks providing skid-steering ability in order to realize the flexible omni-directional 
movement. The docking mechanism consists of two parts: a cone-shaped connector at the 
front and a matching coupler at the back of the module. It enables any two adjacent modules 
to link, forming a train configuration. 

4.1.1 Realizing the parallel mechanism 
The realization of the parallel mechanism is also shown in Fig. 8. Each branch of it consists 
of a driving platform, a Hooker joint, a lead screw, a nut slider, a ball bearing, a 
synchronous belt system, a DC motor and a base platform. The Hooker joint connects the 
driving platform and the nut slider. The lead screw is supported by a ball bearing in the 
base platform. The cone-shaped connector fixed on the driving platform is called a buffer 
head, because its rubber is used to buffer the wallop during the docking process. Besides the 
two branches, there is a knighthead fixed on the base platform and connected to the driving 
platform by another Hooker joint. By revolving the two lead screws, the driving platform 
can be manipulated relative to the Hooker joint on the knighthead. 
 

 
Fig. 8 The parallel mechanism 

There are two advantages in applying the synchronous belt system. 
a) When the screw revolves, it rocks around the ball bearing. By using the synchronous 

belt system and an elastic connector, the rock motion of the screw is isolated from the 
motor.  

b) The motor and the lead screw can be installed on the same side of the base platform, 
and that decreases the dimension of the structure. 

4.1.2 Realizing the serial and docking mechanism 
The docking mechanism consists of two parts: a cone-shaped connector at the front (shown 
in Fig. 8) and a matching coupler at the back of the module, as shown in Fig. 9. The coupler 
is composed of two sliders propelled by a motor-driven screw. The sliders form a matching 
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funnel which guides the connector to mate with the cavity and enables the modules to self-
align with certain lateral offsets and directional offsets. After that, two mating planes 
between the sliders and the cone-shaped connector constrain the movement, thus locking 
the two modules. This mechanism enables any two adjacent modules to link, forming a train 
configuration. Therefore the independent module has to be rather long in order to realize all 
necessary docking functions. In designing this mechanism and its controls, the equilibrium 
between flexibility and size has to be reached. A DC motor is connected to the coupler with 
its motor shaft aligned with the module’s Z axis, which also passes through the center of the 
Hooker joint on the knighthead of the parallel mechanism. Therefore a full active spherical 
joint is formed when two modules are linked. 
 

 
Fig. 9. The serial and docking mechanism 

This docking mechanism can compensate a position deviation within ±30mm and a posture 
deviation within ±45° between two modules. The self-locking characteristic of the screw-nut 
mechanism ensures a reliable connection between two modules to endure the vibration in 
motion. 

4.2 Control system 
The control system of the robot based on an industrial PC (IPC) and a master-slave structure 
meets the requirements of functionality, extensibility, and easy handling (Fig. 10). Multiple 
processes programming capability is guaranteed by the principle of the control structure. 
The hardware consists of an SBC-X255, an independent image processing unit and a low-
level driving unit (SBC 2). 
The SBC-X255 is the core part of the control system. It is a standard PC/104+ compliant, 
single-board computer with an embedded low power Intel Xscale PXA255 (400 MHz). This 
board operates without a fan at temperatures from -40° C up to 85° C and typically 
consumes fewer than 4.5 Watts while supporting numerous peripherals. The Ethernet port 
is used as a communication interface between the IPC and the image processing unit which 
is in charge of searching and monitoring. The IPC is a higher-level controller and does not 
take part in joint motion control. Its responsibilities include receiving orders from the 
remote controller, planning operational processes, receiving feedback information. 
The SBC 2 is in charge of driving five DC motors and receives and processes all related 
sensor signals. It can directly count the pulse signals from the encoder, deal with the signals 
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from other magnetic sensors, and directly drive the DC motors forward and backward at 
different velocities. Meanwhile it sends all information to the IPC through another Ethernet 
port. 
 

 
Fig. 10. The control system of JL-1’s module 

There are two kinds of external sensors on the robot: a CCD camera and touchable sensors, 
which are responsible for collecting information about the operational environment. The 
internal sensors such as GPS, digital compass, gyro sensors are used to reflect the self-status 
of the robot. The gesture sensor will send the global locomotion information of the robot θx, 
θy, and θz to the controller, which are essential to inverse kinematics. Meanwhile there are 
limit switches to give the controller the position of the joint. On the joint where the accurate 
position is needed, the optical encoder is used. 

5. On-site tests 
Relevant successful on-site tests with the mobile robot were carried out recently, confirming 
the principles described above and the robot’s ability. Fig. 11 shows the docking process of 
the connection mechanism whose most distinctive features are its ability of self aligning and 
its great driving force. With the help of the powered tracks, the cone-shaped connector and 
the matching coupler can match well within ±30mm lateral offsets and ±45°directional 
offsets. 
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Fig. 11. The docking process 

Compared with many configurable mobile robots, the JL-I improves its flexibility and 
adaptability by using novel active spherical joints between modules. The following figures 
show the typical motion functionalities one by one, whose principles are discussed above. 
 

   
Fig. 12. Climbing stairs 
 

   
               (1)                                             (2)                                               (3) 

   
              (4)                                       (5)                                        (6) 

Fig. 13. Snapshots of crossing a step 
 

   
                            (1)                                                 (2)                                         (3) 

   
                            (4)                                                (5)                                          (6) 

Fig. 14. Snapshots of the 90° self-recovery 
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  (1)                                             (2)                                       (3) 

   
  (4)                                            (5)                                              (6)  

Fig. 15. Snapshots of the 180° self-recovery 

The experimental results show that the 3 DOF active joints with serial and parallel 
mechanisms have the ability to achieve all the desired configurations. The performance 
specifications of JL-I are given in Table 1. 
 

Parameters Values 

Posture adjustment angle around X-axis ±45° 

Posture adjustment angle around Y-axis ±45° 

Posture adjustment angle around Z-axis 0~360° 

Maximum lateral docking offset ±30 mm 

Maximum directional docking offset ±45° 

Maximum height of steps 280 mm 

Maximum length of ditches 500 mm 

Minimum width of the fence 200 mm 

Maximum slope angle 40° 

Self-recovering ability 0~180° 

Maximum climbing velocity 180 mm/s 

Maximum unchangable working time 4 hours 

Table 1. Performance specifications 
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6. Conclusions 
The modular reconfiguration robot has the ability of changing its configuration which 
makes it more suitable for complex environments. In contrast to conventional theoretical 
research, the project introduced in this paper successfully completes the following 
innovative work. 
a) It proposes a robot named JL-I which is based on a modular reconfiguration concept. 

The advantages and the characteristics of the mechanism are analysed. The robot 
features a docking mechanism with which the modules can connect or disconnect 
flexibly. The active spherical joints formed by serial and parallel mechanisms endow the 
robot with the ability of changing shapes in three dimensions. 

b) A kinematics model of reconfiguration between two modules is given. The relationship 
of the world coordinate and the reference joint coordinate is concluded. Furthermore, 
the movements can be anticipated according to the joints’ driving outputs. The analysed 
results are important for system design and the design of the controlling mechanism for 
the robot. 

c)  Experimental tests have shown that the JL-I can implement a series of various 
locomotion capabilities such as 90° recovery, 180° recovery, and crossing steps. This 
implies the mechanical feasibility, the rationality of the analysis and the outstanding 
movement adaptability of the robot. 

The future research will focus on the following aspects. 
a) Developing a new docking mechanism which tolerates larger offset in rugged terrain 

and can be used as a simple manipulator; 
b) Developing a more reliable track modules with shock absorption function; 
c) Developing a new mechanism which can actively undock a disable robot module. 
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1. Introduction  
The international thermonuclear experimental reactor (ITER) is a joint international research 
and development project that aims to demonstrate the scientific and technical feasibility of 
fusion power. The reactor tokomak (vacuum vessel) is made of stainless steel, and contains 
nine sectors welded together; each sector has about the size of 10 meter high and 6 meter 
wide. The sectors of ITER vacuum vessel (VV) (Fig. 1) require more stringent tolerance 
(±5mm) than normally expected for the size of the structure involved. The walls (inner wall 
and outer wall) of ITER sectors are of 60mm thick and are joined by high quality leak tight 
welds. In addition to the initial vacuum vessel assembly, the sectors may have to be 
replaced for repair. Meanwhile, the machining operations and lifting of a possible e-beam 
gun column system require extreme stiffness property and good accuracy for a machine 
tool. The payload to weight ratio also has to be significantly better than it is in the 
commercial industrial robots. 
The conventional robots, providing a high nominal payload, are lack of stiffness and 
accuracy in such machining condition. Since commercially available machines capable of 
handling large payloads require floor mounting and their workspaces are insufficient for 
reaching the cross section at a single mounting position, a special robot is needed. Parallel 
robots have high stiffness, high dynamic performance and good payload to weight ratio in 
comparison with the conventional serial robots. Stewart [1] presented the novel idea of six-
degree-of-freedom parallel robot in 1960’s. A remarkable number of research articles and 
books about parallel manipulators have been published during the last two decades. There 
are also a number of successful industrial applications developed [2], [3], [4], [7]. The 
parallel manipulators have many potential advantages compared with the conventional 
serial link manipulators. Parallel manipulators are closed-loop mechanism presenting good 
performances in terms of accuracy, rigidity, high speed, and ability to handle large loads. 
They are becoming popular in applications such as machining, welding, assembly, flight 
and vehicle simulators, mining machines, and pointing devices [2], [3], [4], [7]. The most 
important drawback of parallel robots is the small workspace, which can be made larger by 
adding additional serial axes in the robot. 
For the assembly of the ITER vacuum vessel sector, the precise positioning of welding end-
effectors at some distance in a confined space from the available supports will be required, 
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while it is not possible using conventional machines or robots. The parallel robot presented 
in this paper is able to carry out welding and machining processes from inside the ITER 
vacuum vessel, consisting of a six degree-of-freedom parallel mechanism mounted on a 
carriage driven by electric motor/gearbox on a rack. The robot carries both welding gun 
(such as a TIG, hybrid laser or e-beam welding gun to weld the inner and outer walls of the 
ITER vacuum vessel sectors) and machining tools (to cut and mill the walls with necessary 
accuracy). It can also carry other heavy tools and parts to a required position inside the 
vacuum vessel. 
The robot offers not only a device but also a methodology for assembling and repairing VV. 
For assembling, an on-line six-degree-of-freedom-seam-finding algorithm has been 
developed. The algorithm enables the robot to find welding seam automatically in a very 
complex environment. For machining, the multi flexible machining processes carried out 
automatically by the robot have also been investigated, including edge cutting, smoothing, 
and defect point milling. The kinematic design of the robot has been optimised for the ITER 
access and a hydraulically actuated prototype has been built. Finally the experimental 
results are presented and discussed. The earlier development phases of the robot are 
presented in [8] and [9]. 

 2. Structure of VV and assembling process 
The inner and outer walls of the VV of ITER are made of 60mm-thick stainless steel 316L 
and are welded together through an intermediate, so-called “splice plate”, inserted between 
the sectors to be joined. The splice plates have two important functions: (i) to allow access to 
bolt together the thermal shield between the VV and coils; and (ii) to compensate the 
mismatch between adjacent sectors to give a good fit-up of the sector-sector butt weld. The 
robot’s end-effector will have to pass through the inner wall splice plates opening to reach 
the outer wall. As shown in Fig.1, the assembly and repairing processes have to be carried 
out from inside the vacuum vessel.  
 

 
Fig.1 ITER and VV sectors to be welded 
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The assembly or repair will be performed according to four phases: cutting, edge machining 
and smoothing, welding, and non-destructive tests (NDT) control. The robot will carry out 
welding, machining, and inspecting inside the VV. The maximum robot force arises from 
cutting. It can be up to 3kN. 
 

 
Fig.2 The track rail mounted inside VV and robot on the track 

In order that the robot can operate in the cross section of the vessel, a track is assembled 
inside the sector. The track has a rack on one side of the rail and it is supported by manifolds 
and beams (shown in Fig. 2). The robot driven on the rail carries out welding or machining 
along the edge of the sector. After finishing the assembly of two sectors, the robot has to be 
moved to the next sector where there is also a track assembled. After finishing the assembly 
of all the sectors, the robot can be taken out via the port of VV. 

3. Kinematics of parallel robot  
3.1 Structure of parallel robot 
The proposed parallel robot has ten degrees of freedom (Fig. 3). It consists of two relatively 
independent sub-structures: (i) carriage, which provides four additional degrees of freedom, 
i.e., rotation, linear motion, tilt rotation and tracking motion, and these four degrees are 
added to enlarge the workspace and to offer high mobility; and (ii) the Hexa-WH parallel 
mechanism driven by six hydraulic cylinders contributes six degrees of freedom for the end-
effector. Thus the robot is a hybrid redundant manipulator with four extra degrees of 
freedom provided by serial kinematic links. 
a). Carriage mechanism 
The carriage mainly consists of 5 units. i) Carriage frame: The carriage frame is a complex 
structure welded by multi-steel-plates, and it is able to carry high payload and offers 
enough room to maintain mechanisms. Stiffness and weight are the most important 
considerations in the design, and they have been optimized to achieve necessary stiffness 
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with light weight. ii) Tracking drive unit: The tracking drive unit consists of electric motor, 
reduction unit CYCLO, V-shape bearing, and driving gear. The electric servo motor with  
 

 
Fig. 3 Parallel robot 

position feedback controller offers the high accurate motion. In order to output large torque 
to drive the heavy mass and payload, the reduction unit CYCLO is added to the motor  
to reduce speed and to transmit high torque to the driving gear. Two V-shaped wheels keep 
the carriage on the tracking rail at right position to avoid the cross motion. Two drive units 
are used in the carriage to offer enough torque in order to drive the robot and payload 
around inside the VV. iii) Compensation mechanism: The compensation system is an important 
unit that limits the backlash caused by the inaccurate assembling of the tracking rail and 
compensates the distance changing between the wheels in bending area. As the shape of the 
VV is very complicated, it is difficult to keep the tracking rails lying on the VV surface in the 
accurate position. The position tolerance can be up to ±2mm. The distance of the coupled 
wheels has to be adjusted to follow the changes of the rail, and all the wheels must touch the 
parallel rails with certain force during motion; hence an adaptive distance compensation 
system is needed and it should be able to undertake the summed weight of the robot and 
the payload, when the robot is upside down at the top position insider VV. Since the total 
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payload is very heavy, a hydraulic cylinder is applied to justify the compensation force 
according to the position where the robot is located. Fig. 4 shows the compensation system, 
where the upside is the tolerance adaptive mechanism that passively follows the changes of 
track rail and the downside is the hydraulic distance compensation system that ensures a 
constant force is applied to the rails. iv) Linear drive unit: The linear drive unit enlarges the 
workspace of the robot, and consists of five parts: ball screw drive unit, servo motor, rails, 
linear bearings, and a table. Two parallel rails are fixed on the carriage frame to offer the 
motion crossing the frame and to extend the distance of the robot in direction Y. In direction 
Y, the distance from the inner board to the outer board can be 900mm in one VV sector, i.e., 
the robot needs longer reach in this direction, and the linear drive unit helps the robot end-
effector to reach the farther border of the VV. v) Rotation drive unit: This unit offers a rotation 
motion about the Z axis, so that the robot can machine the flexible houses on the inner wall 
at any position. The rotation drive unit consists of slewing bearing, drive gear, reduction 
unit CYCLO, and servo motor. The slewing bearing integrates bearing and gear together, 
leading to a compact structure with light weight. The rotation of the unit can reach ±180°. 
 

 
Fig. 4 Compensation mechanism 
b). Hexa-WH 
A Stewart based mechanism, driven by six servo control water hydraulic cylinders, offers 
six-degree freedom to the end-effector, where the machining head and welding gun are 
mounted. Because of the special shape of the VV, a full six-degree freedom motion for tool is 
needed to enable the robot to carry out welding and machining. The Hexa-WH can offer the 
required accuracy and the high force capacity due to its novel configuration and the 
hydraulic drive. 

3.2 Kinematics model 
The kinematics model is very important for the robot motion control. As the robot has 
redundant degree freedom, it is difficult to find the kinematics solution directly. The 
kinematics models can first be set up for the carriage and the Hexa-WH separately, and then 
be combined together by using an optimization algorithm in solving the redundant problem 
[4], [5]. 
a). Forward kinematics 
As described above, the carriage offers the robot the four-degree freedom: two linear 
motions and two rotations; while the Hexa-WH offers the end-effector the full six-degree 
freedom. The transformation matrix of the robot can be defined as: 
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                                                          Tc =T1 ·T2 · T3 ·T4 ·T5 ,   (2) 
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Once the parameters of joints are given, the forward kinematics of the robot can be defined 
as 

                                                     
0543210 PTTTTTPTP ⋅⋅⋅⋅⋅=•= .  (2) 

To solve the forward kinematic model of the Hexa-WH, the numeric iterative method can be 
employed and it can be solved from its inverse kenamatic model given later in the chapter. 
b). Inverse kinematic model of robot 
As the robot has four-degree freedom of redundancy, we give an inverse kinematic model 
first to the carriage, then to the Hexa-WH. 
Inverse kinematic model of carriage: The inverse kinematic model of the carriage is defined to 
find the values of the four actuators with respect to the frame o for a given position and an 
orientation of P4 on the Hexa-frame. The principle of the carriage mechanism is shown in 
Fig. 5. In the application, rotation angle φ  is fixed only at a few values, 0°, ±90°, and 180°, 

and we can calculate the values of other actuators by fixing φ , i.e., for a given position P4(x, 
y, z), the centre of the Hexa-Frame, we have 
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                                               xrrX =++ φϕ cos)cos( 10 ,  (3) 

 yrrY =++ φϕ sin)cos( 10
,  (4) 

 Zr =ϕsin1 .  (5) 

Then 

 )/arcsin( 1rZ=ϕ ,  (6) 

   φϕ cos)cos( 10 rrxX +−= ,  (7) 

 φϕ sin)cos( 10 rryY +−= .   (8) 
 

 
 

Fig. 5  a) Mechanism of carriage, b) Hexa-WH 

Inverse kinematic model of Hexa-WH: The inverse kinematic model for the Hexa-WH is defined 
to find the values for each cylinder at a given position and an orientation of the end-effector 
with respect to the Hexa-frame. Here O4 is coincided with P4 on the carriage side. Fig.5 b) 
demonstrates the coordinates of the Hexa-WH. 
The inverse kinematics model for the Hexa-WH is 

 iii rrROOL −⋅+= '
54  (i = 1, 2, …,6),  (9) 
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ir  denotes the vector of the joint of the ith cylinder on the Hexa-frame with respect to frame 

o4 and '
ir  is the vector of the joint of the ith cylinder on the end-effector with respect to 

frame o5. 
The length of each cylinder can be found, when (x, y, z, γ, β, α) is defined with respect to 
frame o4. 

                                            )'
54()'

54( irirROOirirROOiLil −⋅+•−⋅+== .  (10) 

There are two ways to combine the two inverse kinematic models to get the solution of the 
whole robot. One simple way is to calculate the coordinates (x, y, z, γ , β , α ) of the end-
effector with respect to {O4} and the values for each actuator from equations (3-10) for the 
given coordinates of the end-effector with respect to frame {o}, while fixing {O4} at a certain 
position with respect to frame {o} according to experience. The another way is to use an 
optimization algorithm to find redundant solution, which is subjected to minimize the 
deflection of the robot during motion, i.e., ),(min lqf

l
, where f is the deflection model of the 

robot, q  is the position vector of the end-effector, and l is the value vector of ten actuators. 

For a given q  we can find l  by solving the optimization problem ),(min lqf
l

. 

4. Control system 
4.1 Hydraulic control system 
Fig.6 shows the water hydraulic system. Pressure servo control is applied in locking 
cylinders. Position servo controller is used in cylinders 1-7. There are three loops in the 
servo position control: the position loop together with the speed loop that provide an 
accurate and fast trajectory tracking; and  the load pressure feedback loop that is applied to 
damping the self-excited oscillations, which normally occur in the natural frequency. The 
speed loop can eliminate the speed error, while the pressure feedback damps the vibration 
of hydraulic actuators (Fig. 7).  
 

 
Fig.6 Water hydraulic circle 
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The hydraulic cylinders normally lack damping that makes the cylinder control difficult by 
using conventional PID-controllers. The damping can effectively be increased by means of 
load pressure feedback. The major drawback in using pressure feedback is its negative effect 
on the static stiffness of the actuator. To overcome this problem, the high pass filters are 
used in the load pressure feedback loops. The high pass filter removes the negative effect of 
pressure feedback at low frequency. 

 
Fig.7  Hydraulic servo position  control 

4.2 Motor control 
Two drive motors contribute effort for the tracking motion of the robot. As the tracking rails 
are not always straight, the speeds of the two motors are not the same when the robot is 
moving. The torque control together with a position feedback algorithm is implemented. 
Fig. 8 shows the control principle. 
 

 
Fig. 8 Tracking motor control 



 Parallel Manipulators, Towards New Applications 

 

372 

In this method, one motor works as master, and another one works as slave. For the master 
motor, the position control plus the speed control is applied to guarantee the required speed 
and position accuracy of the carriage on the tracking rail. For the slave motor, the torque 
control is applied, which contributes the driving torque for the robot. 

4.3 Control of hardware and software 
Because there are no commercial controller and software available for the special functions 
of the parallel robot, an open architecture of hardware and programmable software are 
being developed. Fig. 9 shows the structure of hardware control system. The controller is an 
industrial-PC-based motion controller. It provides a reliable and easy-at-use environment 
for controlling the robot because Earthnet bus is used in the connection of iPC and I/O 
interfaces. 
 

 
 

Fig.9 Structure of robot controller 

The software is defined in Fig.10, including graphical interface, trajectory planning, forward 
and inverse kinematics models, interpolator, controller, and I/O interface functions. And 
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those functions have to be integrated with the program offered by iPC and run completely 
in real time.  
Graphical interface is a high level program, it includes parameter setting, condition 
monitoring, and graphical visualization functions. User can easily exchange information 
with this program. 
Trajectory planning is also a high level program. As the robot has redundant actuators, the 
trajectory planning is much more difficult than usual, so an optimization algorithm, which 
is subjected to minimize the deflection of the robot during motion, has been employed.  
Forward and inverse kinematics models and interpolator are real time functions, which generate 
data for motion controller.   
Controller is a real time function including water hydraulic controller and motor controller. 
As the robot has two tracking motors and the speed of the motors are not always the same at 
some positions, a master–slave control algorithm has been used. 
I/O interface functions are real time functions, which enable transferring date from sensor to 
controller and from controller to driver. 
 

 
Fig. 10 Structure of software 

5. Machining and welding testing mock-up  
The parallel robot has been built in Lappeenranta University of Technology and the 
machining and welding test mock-up is designed shown in Fig.11. The mock-up is one 
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quarter of a sector built up for testing the machining and welding functions of the robot. 
Before the mock-up, some welding and machining tests have been carried out with the first 
prototype of the parallel robot named Penta-WH. The laser welding with seam tracker has 
been tested in stainless steel and the machine cutting with disc saw has been tested in the 
stainless steel machining process. The robot performs well in the tests. 

5.1 Machining  
The cutting test was carried out with stainless steel. The high speed steel cutting tool was 
used in the test. It is 200mm in diameter and 4mm in thickness. The problem in the 
experiment was that the high speed cutting tool wore out quickly during the cutting. The 
carbide tools, which are much more suitable for cutting stainless steel, are suggested to be 
used in the cutting operations in the ITER. 
 
 

 
 

 

Fig.11 VVPSM mock-up and final version of parallel robot  

5.2 Laser welding test 
In the ITER assembly, the high quality welds are required to avoid the leak of tritium. They 
can be achieved by a highly automatic and remotely controlled welding procedure. To 
guarantee the welding quality, a seam tracker, which guides the robot motions along the 
center of a welding seam, is employed. With a seam tracker, the parallel robot has the 
capability to correct the motion trajectory on-line to keep the welding head at the right 
position and orientation in relation to the welding seam. The position errors of the welding 
head related to the welding seam caused by the distortion of material and the imprecise 
track rail are described in Fig.12. 
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During testing, the laser welding head is mounted on the end-effector of the parallel robot 
while the seam tracking sensor is mounted in the front of the welding head for guiding the 
robot welding (Fig.12). The work piece is assembled randomly in the y and z directions 
during testing. It has approximately a one-degree angle about the Y and Z-axes. The 
position of seam is unknown for the robot before the seam finding. The maximum output 
power used in the testing is 3 kW YAG. It has a 200mm focal length resulting in a 0.6 mm 
diameter focal spot on the work piece. The beam parameter product is 25 mm-mrad. The 
work piece is made of stainless steel AISI 316LN. It has a 7mm-thickness, 600mm-length, 
and 0.2mm-root gap for welding. 
 

 
 

Fig.12 Principle of seam tracker 

Two seam tracking algorithms were tested during laser welding trials. One is the off-line 
teaching algorithm that has two steps: (i) the robot follows the planned trajectory of the 
seam and records the data from the seam tracker; and after that (ii) the robot compensates 
the motion trajectory from the data recorded and starts welding following the new motion 
trajectory. Fig.13 shows the welding results. The second algorithm is the on-line teaching 
algorithm. In the algorithm, the robot corrects the trajectory on-line using data from the 
seam tracker during the welding motion. Fig.14 shows the welding results achieved during 
the tests.From the test results, we can conclude that the on-line teaching algorithm is better 
than the off-line teaching algorithm, because the on-line teaching algorithm compensates the 
distortion of the work piece during the welding process. 
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Fig.13 Off-line teaching welding results 

 
Fig.14 On-line tracking welding results 
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6. Conclusion 
A hybrid parallel robot with four additional serial motion axes is developed for carrying out 
the necessary machining and welding tasks in the assembling and repairing of the ITER 
Vacuum Vessel. The robot is capable of holding all necessary machining tools and welding 
end-effectors in all positions accurately and stably. The kinematics analysis of the robot is 
presented. The models are complex because of the redundant structure of the robot. The 
models are separately derived for the Hexa-WH and the carriage mechanism. An 
optimization algorithm finds the solution in the trajectory planning, ensuring the maximum 
stiffness during the robot motion. The experiments of the laser welding tests with the seam 
tracker have been carried out. Both the on-line and off-line teaching algorithms have been 
developed and the results show that the online teaching algorithm is better. The machining 
cutting tests with stainless steel have been tested. The entire design and testing process of 
the robot is a very complex task due to the high specialization of the manufacturing 
technology needed in the ITER reactor. The results demonstrate the applicability of the 
proposed solutions quite well. 
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1. Introduction 
Throughout the ages, human beings have evolved in various aspects of society including 
politics, technology, etc. This is true of the age of mechanization in which rudimentary 
machines were developed and controlled by operators. The age of mechanization then gave 
dawn to the age of automation, where the operators were replaced by controllable machines. 
Humans have since taken on a passive supervisory role and less of an active control of these 
machines and the mechanized world is dawning on the age of autonomization. In this age, 
humans will regress further from their involvement with the daily activities of machines as 
the advancement of embedded computers, smart sensors and intelligent controllers will 
enable machines to operate autonomously. These include systems embedded with artificial 
intelligence and those that are able to change their structural configurations. Under different 
circumstances, such systems would adapt to changes in their surrounding environment by 
autonomously altering their configuration and function. The advantages of developing these 
intelligent reconfigurable systems include adaptability, reusability, convertibility, 
compactness, fault-tolerance and emergency behaviour (Koren et al., 1999).  
Research into reconfigurable systems is primarily active in robotics. The main idea of 
developing reconfigurable systems is based on the use of modular components as building 
blocks (Yim et al., 2002). Several interesting modular reconfigurable robots have been 
proposed, and they may be classified into three categories: manual-configuring, self-
configuring, and self-assembly. 
Manual-configuring robots are often referred to as modular robots. They can only be 
reconfigured with some form of manual assistance and represented the first steps leading 
into the age of autonomization. The modular units are usually built with the embedded 
controllers connected to a host computer. The host computer has the ability to quickly 
recognize new configurations and automatically generate the kinematic and dynamic 
equations for control. Examples include the work at Stanford (Yim, 1994), and Carnegie 
Mellon University (CMU) (Unsal et al.,2000). More recently, a reconfigurable manufacturing 
cell was developed based on modular robotic components (Chen, 2001). His research team 
demonstrated that by using modular components they were able to quickly construct a 
parallel kinematic machine for machining and several serial robots for material handling. 
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Self-configuring robots cannot perform self-assembly. However, they can perform 
reconfiguration after the robotic system is assembled with some form of manual assistance, 
making further progress into the age of autonomization. Michael (Michael, 1995) developed 
what he called the fractal shape changing robot based on robotic cubes. These cubes are 
built with embedded active driving mechanisms. Once attached manually, these cubes can 
slide on each other's faces for reconfiguration. Since the cubes are made in different sizes 
and can be combined together, the robot is called the fractal shape changing robot. 
Self-assembly robots are the robots with the highest level of reconfigurability because they 
can detach from and attach into a robotic system automatically. For example, a self-
assembly robotic system was developed that uses electro-magnetic disks as the basic units 
that can attract and repel each other through computer control for automatic reconfiguration 
(Tomita et al., 1996). Reconfigurable systems like these and those with artificial intelligence 
represent what will define the age of autonomization. 
As space flight and exploration is costly, reconfigurable systems for space applications have 
also been explored to provide more cost effective solutions to an array of problems. A two-
dimensional foldable hexapod truss for space deployment was proposed (Onoda et al., 
1996). A modular parallel robot, called TETROBOT, was designed based on tetrahedron 
modules that can be reconfigured for different applications (Hamlin and Sanderson, 1997). 
Variable geometry truss manipulators (VGTM) have been studied as reconfigurable support 
structures for space applications (Horner, 1990). Reconfigurable mobile robots have been 
researched by a research team from MIT, JPL and CMU (Schenker et al., 2000). A light 
weight modular robot was recently proposed from MIT (Hafez et al., 2003). Space flight and 
exploration is definitely an area that will prosper greatly from the emergence of 
autonomization.  
This chapter focuses on the development of a reconfigurable parallel robot capable of on-the-
fly self-reconfiguration. The main idea is to utilize the modularity inherent in the parallel 
robots, which has previously been overlooked. Since most parallel robots are made of 
identical kinematic chains arranged in parallel fashion, all the components (mechanical and 
electrical) used in each individual kinematic chain, hereafter called branch, are the same. 
This provides a natural base for the development of reconfigurable systems. Also, the 
capability of on-the-fly self-reconfiguration represents inroads to autonomous parallel 
robotic systems. 
The rest of the chapter is organized as follows. First, the design methodology is presented. A 
top-down system decomposition method is used to identify the modules required to build 
the reconfigurable system from the bottom-up. By using this top-down subsystem 
decomposition approach, the robotic system is decomposed from the system level to 
separate individual robots, then to subsystems and finally to the component level. To 
facilitate the design methodology, potential branch configurations are identified using the 
modular components and a mobility analysis is performed to identify the system 
constraints. Enumeration rules are established to eliminate the unacceptable branches for 
each base tripod based on the kinematic constraints required for reconfiguration. A 
parametric model is established to solve the constraint equations. Individual branch 
kinematics are established and the loop equations are solved. A workspace analysis is 
performed and a discrete system optimization yields the optimal parallel robot 
configuration. 
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2. Design methodology 
The proposed reconfigurable parallel robot is constructed by two base tripods, each being a 
three degrees-of-freedom (DOF) parallel robot. The first tripod remains fixed to the moving 
platform, and the links of the second tripod are designed to be detachable from the moving 
platform. The detachable branches are then reconfigured into 2-DOF serial robotic arms. 
Fig. 1. shows a 6-DOF parallel robot that has been decomposed into two tripods; one with a 
typical moving platform, and one which has branches detached from the moving platform. 
By detaching one, two or all three branches of the second tripod, separately, the parallel 
robot can be reconfigured on-the-fly from 6-DOF to, 5, 4 or 3-DOF, respectively. 
Additionally, the detached links can then be used to perform collaborative work with the 
remaining parallel robot. 
 

 
Fig. 1. A (a) 6-DOF parallel robot is decomposed into two base tripods: (b) fixed tripod, 
(c) detachable tripod 

The proposed reconfigurable parallel robot not only provides innovation in autonomous 
reconfigurable system design but also stimulates new research of parallel robot kinematics. 
Since traditional parallel robots are not reconfigurable, the kinematics have been studied on 
a case-by-case basis for the particular parallel robot type, and have generally been restricted 
to 3-DOF and 6-DOF parallel robots. Also, reconfigurable robotic systems tend to require a 
halt in operations to allow for the robot to reconfigure itself either by itself or by some type 
of manual assistance. Here, there is no down-time for reconfiguration as the parallel robot is 
capable of on-the-fly self-reconfiguration. This enables the robot to quickly adapt to changes 
in its environmental surroundings as well as changes to task requirements. This single 
feature is extremely important in distinguishing the final design with other reconfigurable 
robots in service, where in-task adaptability and reconfiguration are not commonly found. 

(b) (c)

(a)
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2.1 Design for reconfiguration 
As mentioned in Section 1, the basic idea of designing any reconfigurable system is based on 
the use of modular components as building blocks. The design methodology used is based 
on the methodology called Design for Reconfigurability (DfR). Based on DfR, the design of a 
reconfigurable system can be described by the Axiomatic Design Theory (Suh, 1990) such 
that designing a reconfigurable system is defined as the minimization of the number of 
modules {Design Parameters} while maximizing its functionality {Function Modes}. Further 
discussion of this system design methodology can be found in (Chen et al., 2005). 
A summary of function modes is summarized in Table 1. These function modes are in fact 
the design objectives, i.e. the reconfigurable parallel robot must be capable of performing 
the prescribed functions.  
 

Robot Configuration 
Function Mode 

Parallel Configuration Auxiliary Configuration 

FM1 = Fully Attached 6-DOF None 

FM2 = Partially Detached 5-DOF 1 2-DOF serial arm 

FM3 = Partially Detached 4-DOF 2 2-DOF serial arms 

FM4 = Fully Detached 3-DOF 3 3-DOF serial arms 

FM5 = Coordinated 3-DOF 6-DOF gripper 

FM6 = Fully Detached VGTM 3 3-DOF serial arms 

FM7 = Fully Detached VGTM 6-DOF gripper 

Table 1. Function modes and robot configurations 

2.2 System decomposition 
As a series of modules are required as building blocks for a reconfigurable system, the first 
step is to decompose the parallel robot into a series of common modules. For serial robots, 
the decomposition into common modules is generally straightforward as serial robots are a 
collection of links and joint actuators. These modules are then connected sequentially to 
build the final robot architecture. For parallel mechanisms, the decomposition of the robot 
system is not as straightforward due to the physical and mathematical constraints of the 
system. There does exist though a natural modularity that has generally been overlooked 
when dealing with parallel robots as will be shown.  
From Fig. 1., a 6-DOF parallel manipulator system is separated into two individual 3-DOF 
tripods subsystems. Each tripod subsystem can further be decomposed into a series of 
branch subsystems with a common structural subsystem. The 6-DOF robot has only one 
base and one moving platform, thus the decomposition of the two tripods results in these 
also having a common base and moving platform. Without losing any generality, the branch 
subsystems for the two tripods are composed of a collection of link modules, passive joint 
modules and active joint modules (i.e. actuators). These modules represent the final level of 
decomposition required to describe a generic parallel robotic system. Further decomposition 
is also possible and this is where the detailed design and part selection occur and is beyond 
the scope of this chapter. 
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Fig. 2. System design cycle of a reconfigurable parallel robot 

This decomposition is further explained in Fig. 2. It is plain to see that the arrow on the left 
side of the figure indicates the direction taken for the system decomposition. The arrow on 
the right side of the figure is where the majority of the architecture design occurs. Once the 
building blocks (modules) of the reconfigurable system have been identified, then we can 
work our way from the bottom-up to establish the optimal system architecture. This is 
accomplished by first using the modules to form branch module candidates. A mobility 
analysis is performed and enumeration rules are used to eliminate those branch candidates 
that cannot fulfill the design requirements. A kinematic and workspace analysis is 
performed and then is used to arrive at the final optimal architecture design of the parallel 
robot. All of this is performed such that the final design can perform all of the function 
modes identified in Table 1. 
We note that each level of decomposition brings an additional level of modularity. The 
physical modularity was described above. During the architecture design, the modularity 
inherent in the assembly of reconfigurable robots will be address. We also note that there is 
modularity in the mathematical computations and control for each system level. The 
kinematic computations for 6-DOF parallel manipulators, 3-DOF tripod manipulators, open-
chain branches (including simple chains consisting of one joint) are well established. This is 
also true of their subsequent control laws and algorithms. Although this is beyond the scope 
of this chapter, it is a very important aspect of the advancement of reconfigurable systems. 
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3. Module identification 
The module identification stage is the first and second part of the bottom-up architecture 
design as seen in Fig. 2. The identification of the components is the first and the 
identification of the branch configurations is the second. For reconfigurable systems, the 
larger the cache of building block modules, the larger the solution space with a greater 
diversity of possible solutions. 

3.1 Components 
3.1.1 Active joint modules 
Active joint modules are the modules that are controllable. Currently, there are numerous 
commercially available simple actuation devices (having 1-DOF). They are categorized as 
rotational (revolute), or linear (prismatic). The topographical analysis (Tsai et al., 1998) uses 
these two categories of actuation devices to enumerate the configurations of some planar 
and spatial parallel manipulators. The revolute joint was decomposed into the standard 
rotational joint and a twist joint (Dash et al., 2005). Hereafter we will refer to these joints as 
transverse revolute joints (RT), and axial revolute joints (RA), respectively. We similarly 
decompose the prismatic joint into a fixed-length actuator (PF) where a platform slides along 
a fixed guide track, and a variable length actuator (PV) as most commonly seen in Gough-
Stewart platforms. All four of these actuation devices are commercially available and are 
included in the identification of feasible branch modules. We also introduce a universal joint 
(U*) that has one controllable DOF and one passive DOF as a possible active joint module. 
Kinematically, it is represented by the presence of two revolute joints whose axes intersect at 
a point and are orthogonal to each other. Physically one axis is attached to an actuation 
device. 

3.1.2 Passive joint modules 
The active revolute joint modules and prismatic joint modules are also identified as passive 
modules by removing their ability to be controlled. The other common passive joint 
modules are identified as universal (U), spherical (S), and cylindrical (C). 

3.1.3 Link modules 
The link modules are simply a means of connecting the active and passive joint modules to 
each other in series. These can vary in appearance and length depending on the task 
requirements, but those parameters are left for the detailed design phase, which is beyond 
the scope of this chapter. 

3.1.4 Structural components 
The structural components of a parallel manipulator consist of the base and moving 
platform. The size and shape of these components vary depending on the task requirements 
but must be designed so that the based supports the various branches and the platform 
supports the end effector. Again, the specifics are left for the detailed design phase and are 
beyond the scope of this chapter. 

3.2 Branch identification 
Using a combinatorial analysis, the branch configurations can be enumerated for their 
potential feasibility as either a fixed branch or a detachable branch or both. In general each 
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branch in a spatial parallel manipulator must consists of at least two links and three joints. 
Branches can consist of any number of joints and links such that the total branch DOF meets 
the mobility requirements. For a 6-DOF parallel manipulator with six branches, the branch 
DOF must be equal to six (more information on this is covered in the mobility analysis). The 
combinatorial analysis is limited to those branches that have two links and three joints for 
the following reasons: 
• Smaller branches (those with fewer joints and links) are easier to evaluate 

mathematically. With additional joints, there exists the possibility of multiple solutions 
for the forward and inverse kinematics of the active and passive joint variables. This 
situation is less likely, and sometimes impossible, for two-link, three-joint branches. 

• In both attached and detached configurations, they provide the minimal amount of 
joint-link combinations to maintain functionality. This will become more apparent 
during the architecture design phase. 

• Branches with a large numbers of links and joints require more physical constraints 
when converting from attached to detached configurations, thus making the structure 
itself more physically complicated. This is especially true in the case of individual 
detached arms. This is a direct result of the configurations presented in Table 1 and will 
also become apparent during the architecture design phase. 

• The fewer number of joints within the individual branches leads to a lesser chance of 
collision between the branches. 

Using the five active joint modules and the seven passive joint modules a total of 78 branch 
configurations are identified as being theoretically possible. The only restriction placed on 
joint sequence is for the fixed-length prismatic joint in that it must either be placed at the 
base or platform position due to the structural advantages of having a rigid connection of 
the track. If it were to be place as the middle joint, then it would act as a variable length 
prismatic joint and lose all of its structural advantages. Using the notation stated above, 
Table 2. summarizes the various configurations. 
 

Active 
Joint Configurations 

RT RTUS, RTSU, URTS, SRTU, USRT, SURT, RTCS, RTSC, CRTS, SRTC, CSRT, SCRT 

RA RAUS, RASU, URAS, SRAU, USRA, SURA, RACS, RASC, CRAS, SRAC, CSRA, SCRA 

PF PFUS, PFSU, USPF, SUPF, PFCS, PFSC, CSPF, SCPF 

PV PVUS, PVSU, UPVS, SPVU, USPV, SUPV, PVCS, PVSC, CPVS, SPVC, CSPV, SCPV 

U* 

U*UU, UU*U, UUU*, U*RTS, U*SRT, RTU*S, SU*RT, RTSU*, SRTU*, U*RAS, U*SRA, 
RAU*S, SU*RA, RTSU*, SRAU*, PFU*S, PFSU*, SU*PF, U*SPF, U*CU, U*UC, CU*U, 
UU*C, CUU*, UCU*, U*PVS, U*SPV, PVU*S, PU*PV, PVSU*, SPVU*, U*CC, CU*C, 

CCU* 

Table 2. Branch configurations 

4. Architecture design 
The enumeration part of the design serves the purpose of defining what is deemed 
acceptable candidates for the fixed and detachable tripods. A mobility analysis is done to 
provide a link between the identified branches and the mobility requirements of both 
tripods and is important for the formation of many of the enumeration criteria. 
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4.1 Mobility analysis 
From Fig. 1. and Table 1., it can be seen that the reconfiguration of the robot will change the 
robot constraints. For example, going from an attached to detached configuration, the robot 
must change its constraints in order to constrain the freedom released by the detached 
branch(es). Otherwise, the robot would be loose and uncontrollable. Hence, in order to 
understand how the robot constraints change during reconfiguration, a mobility analysis is 
required. As will be explained later on, solving the constraint equations is a priori to solving 
the inverse kinematics. 
In general, the reconfigurable parallel robot under study can be categorized to have attached 
and detached configurations. The mobility requirements are thus different for different 
configurations. In the attached configuration, the parallel robot is a 6-DOF parallel robot. 
The mobility of a system is given by the following equation 

 ( )
1

1
jn

l j i
i

F n n fλ
=

= − − +∑   (1) 

where F denotes the mobility or the effective DOF of a parallel mechanism, λ is the order of 
the system (λ = 3 for planar motion, and λ = 6 for spatial motion), nl is the total number of 
the links, nj is the total number of the joints, and fi is the number of DOF for the ith joint. 
For a parallel manipulator, the branch connectivity can be calculated using Euler's equation. 
Through some mathematical manipulation it can be shown that the sum of the connectivity, 
Ck, of the kth branch is equal to the total DOF of the system 

 ( )
1 1

1
jb nn

k i l j
k i

C f F n nλ
= =

= = − − −∑ ∑   (2) 

where nb is the number of attached branches. Further manipulation shows that the 
connectivity of each branch must be less than or equal to the order of the system, and it 
must be greater than or equal to the mobility of the moving platform 

 kC Fλ ≥ ≥   (3) 

The full derivation has previously been derived and can be found in (Tsai, 1998). Table 3. 
shows a summary the mobility analysis for the various robot configurations, including the 
connectivity of the kth branch. 
 

Parallel Robot Configuration Variable Symbol
3-DOF 4-DOF 5-DOF 6-DOF 

System Order λ 6 6 6 6 
Degrees-of-Freedom F 3 4 5 6 

Number of Links nl 8 10 12 14 
Number of Joints nj 9 12 15 18 

Branch Connectivity Ck 5, 5, 5 6, 6, 5, 5 6, 6, 6, 6, 5 6, 6, 6, 6, 6, 6 
Number of Constraints m 3 2 1 0 

Table 3. Mobility analysis summary 
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4.2 Enumeration criteria 
With the branch configurations identified and connectivity constraints established, the 
enumeration process can now be performed to eliminate some of the branch configurations. 
Since there are two tripods which are functionally different, there are two sets of 
enumeration criterion for the elimination of branch configuration. There is some overlap in 
branch elimination criteria between the two tripods and these are addressed first followed 
by the tripod-specific enumeration rules. 

4.2.1 Fixed and detachable tripod enumeration criteria 
The active joint must be placed on, or near the base. This requirement is what generally gives 
parallel robots their payload-to-weight advantages. If the active joints (i.e. motors) are 
placed at or near the base, then the majority of mass/inertia to be driven is in the platform 
and end effector. All configurations with the active joint at the platform are eliminated. 
A spherical joint must be located at the moving platform. As will be shown later, the presence of a 
spherical joint in the branch is most advantageous if it is located at the moving platform. It 
provides a natural pivot point for the moving platform. Thus the elimination of all branches 
without a spherical joint, and those with spherical joint modules at the base or middle 
position is necessary. 
In the fully connected configuration, the motion profile for all branches must be spatial. In the fully 
detached configuration, the motion profile for both the individual fixed and detached tripod branches 
must be planar. Although these may seem obvious, it helps in the elimination of some of the 
branch configurations that are not capable of these mobility requirements. For the fully 
detached configuration and those branches with kinematic constraints in the partially 
detached configurations, the plane of motion of the branch must orthogonal to the base and 
parallel to a plane passing through the joint at the base, and the base joint directly opposite 
to it. This eliminates all branch configurations with an active or passive axial revolute joint 
module. 
After these enumeration criteria are applied, a total of 15 configurations remain as 
possibilities for the fixed and detachable tripod branches which are summarized in Table 4. 
 

Active 
Joint Configurations 

RT RTUS, URTS, RTCS, CRTS 
PF PFUS, PFCS 
PV PVUS, UPVS, PVCS, CPVS 
U* U*RTS, RTU*S, PFU*S, U*PVS, PVU*S 

Table 4. Acceptable fixed and detachable branch configurations after applying initial 
enumeration criteria 

4.2.2 Fixed branch enumeration criteria 
Fixed branches must have one lockable DOF. As seen in Table 3., the connectivity requirements 
for the fixed branches change according to the number of the branches that are either 
attached or detached from the moving platform. A fully attached parallel robot 
configuration requires each branch to have a connectivity of 6-DOF and a fully detached 
parallel robot configuration requires each branch to have a connectivity of 5. Thus it is 
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required that there exists a joint that has a lockable DOF. The lockable DOF must exist on a 
joint with 2-DOF for the following reasons: 
• If a single DOF joint is locked, it then forms a rigid bond between the two link modules 

that it is attached to, thus reducing the number of links in the branch from two to one. 
One link does not allow for proper articulation of the moving platform and therefore 
single DOF joints cannot be locked.  

• For the 3-DOF spherical joint, it is possible to lock out one of the DOF, but is not 
necessarily easy. Since, the spherical joint is positioned at the moving platform, locking 
one of these DOFs will cause the branch to have spatial motion, which as previously 
mentioned as unacceptable. 

From this, there are three possible joint modules that are candidates for a lockable DOF; one 
axis of the passive universal joint module; the revolute axis of the passive cylindrical joint 
module, or; the passive axis of the 1 DOF controllable universal joint module. Although this 
rule does nothing to eliminate branch configurations, it is important to establish this 
criterion when it comes to the physical design of the robot itself. 
Fixed-length vs. variable length prismatic joints. For structural considerations, having a fixed-
length prismatic joint at the base is more advantageous than having a variable length 
prismatic joint. We thus eliminate the PVUS, PVCS, and PVU*S branches. 
Branches with identical modules, but different sequences. One of the previous enumeration 
criteria was that the active joint module and thus motor should be placed at the base or close 
to it (i.e. the second joint position). There are several remaining branch configurations that 
have the same joint modules, but vary in sequence. Again, the advantages of keeping the 
motor on the base itself as opposed to at the second joint enables the elimination of those 
branch configurations that have identical modules and the active joint module in the 
middle. Thus the URTS, CRTS, and the  RTU*S configurations.  
As seen in Table 5., this does not eliminate all of the configurations with an active module in 
the middle joint position, rather just the ones that are less advantageous. A total of nine 
branch modules remain as candidates for the fixed branch tripod. Also shown is the 
configuration required for the branch(es) after reconfiguration into the 3, 4 or 5-DOF 
configurations. It is seen that there are six unique configurations after reconfiguration. 
 

Active Joint Configurations 
RT RTUS → RTRTS RTCS → RTPVS 
PF PFUS → PFRTS PFCS → PFPVS 
PV UPVS → RTPVS CPVS → PVPVS 
U* U*RTS → RTRTS PFU*S → PFRTS U*PVS → RTPVS 

Table 5. Potential fixed tripod branch module configurations 

4.2.3 Detachable branch enumeration criteria 
Detachable branches must transform from a closed loop 6-DOF connected arm, to a 2-DOF, serial 
arm. To maintain usability of the detached arms, and maintain the requirement of planar 
motion in the fully detached or partially detached configurations, there must be two 
controllable axes. Since the arm will detach from the spherical joint module connection, 
there is still a total of 3-DOF and two links. One of these DOF is already controllable, so to 
satisfy the requirements, one of the other axes must be controllable, and the other lockable. 
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For proper articulation, the control must be present at each joint location. This is 
summarized in Table 6. where the reconfiguration of the detachable arms are shown. It is 
seen that after reconfiguration, several of the branches are kinematically identical, but are 
not physically identical. The reconfiguration requires that passive universal joints become 
active transverse revolute joints, passive revolute joints become active while the passive axis 
on the 1-DOF controllable universal joint locks, and the passive cylindrical joint becomes an 
active variable length prismatic joint. Although, this enumeration criterion does not 
eliminate any branch modules, it is important as it establishes the kinematic and physical 
requirements that each branch must adhere to after reconfiguration. 
 

Initial Active Joint Configurations 
RT RTUS → RTRT, URTS → RTRT, RTCS → RTPV, CRTS → PVRT 

PF PFUS → PFRT 

PV UPVS → RTPV 

U* U*RTS → RTRT, RTU*S → RTRT, PFU*S → PFRT, U*PVS → RTPV 

Table 6. Reconfiguration of the detachable tripod branch module configurations 

Detachable branches must have acceptable reach beyond the height of the moving platform. It is 
obvious that the detachable branch must be able to reach the moving platform, but here we 
require that they extend beyond the position of the platform for greater usability. Although 
this requirement is ambiguous and there is no clear definition of what is acceptable, we 
eliminate those branches that have prismatic actuation after disconnection. It is clear to see 
that a 2-DOF robotic arm with two revolute joints has a larger potential reach than those 
with prismatic joints. The notion of potential reach is based on the length of the links and 
those links connected to revolute joints are traditionally longer in parallel manipulators than 
their prismatic counterparts. 
Branches with identical modules, but different sequences. The four branches that reconfigure into 
the RTRT configuration are acceptable as candidates for the detachable branches, and all four 
cases require the second joint to be independently actuated. In the attached configuration 
however, only one joint is driven and therefore in this configuration it is beneficial to drive 
the joint at the base. After elimination, the only branch configurations that are candidates for 
the detachable tripod are the RTUS and the U*RTS. 
Motor placement. With only two branch configurations remaining, the placement of the joint 
motors is the final enumeration criteria. Previously, we required that the motor be place at 
or near the base for the primary driven motor. In this case, there is a requirement that the 
first and second joint be driven when detached from the platform. In the case of the RTUS 
branch, the motion profile of the middle universal joint is always planar. This allows for the 
second joint to be driven remotely, i.e. belt driven with the motor place on the base as well. 
Having both motors placed on the base requires that the first motor drive only the 
mass/inertia of the links and not the second motor. Since the motion profile of the second 
joint of the U*RTS branch is not planar, it becomes much more difficult to drive the second 
joint motor remotely. It is for this reason that then we select the RTUS branch configuration 
with a remotely driven second joint as the branch configuration for the detachable branches, 
and no further enumeration and elimination is required. 
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4.3 Tripod configurations 
Since we can pair each of the fixed-tripod branches with the detachable RTUS branches, 
there are a total of nine possible parallel robotic systems after enumeration. To further 
evaluate the possible configurations, a workspace analysis and comparison is used. To 
calculate the workspace of a parallel robot, the inverse kinematics model is used to search 
for reachable points. The next section deals with the development of the kinematics of each 
branch configuration as well as dealing with the constraint equations for the 3, 4 and 5-DOF 
configurations. 

5. Robot kinematics 
5.1 Parametric kinematic model 
Parallel robots have inverse kinematics that can generally be solved geometrically. That is 
for a given end effector position and orientation, the joint variables can be solved directly 
without numerical methods. A hypothetical parallel robot is presented in Fig. 3. that shows 
the extensible branch model. From this model, solutions to all other branch configurations 
can be derived. 

 
Fig. 3. Kinematic model of a parallel robot with extensible branches: (a) Kinematic model of 
a generic extensible leg, (b) Kinematic model of the fixed and connected detachable legs 

According to the coordinate systems defined in Fig. 3, the position of the ith spherical joint 
attached to the moving platform can be given as 

 '+= ii Rphp   (4) 

where pi = [pix  piy  piy]Tis the position of the ith joint expressed in the global joint expressed in 
the global coordinate frame O-xyz, pi’ presents the same point in the local coordinates O'-
x'y'z' attached to the moving platform, h = [xc  yc  zc]T is the vector representing the position 
of the moving platform, and R is the rotation matrix of the moving platform. 
Now let m be the number of the constrained branches, a complete set of the branch 
constraint equations may be presented as 

(a) (b) 
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 y x=p Tp   (5) 

where px is the vector containing pix components of m constrained branches, py is the vector 
containing piy components, and T = diag(tan αi) 
Equation (5) represents a parametric model in terms of αi, pix and piy that can be used to 
describe the branch constraint equations for all configurations of the reconfigurable robot. 
Depending on the robot configuration, constraint equations must be solved in order to 
define the motion of the moving platform. Table 7. describes which moving platform 
motions are constrained for each configuration. Note that the number of constraint 
equations required is identical to those listed in Table 3. A complete derivation of the 
constraint equations can be found in (Xi et al., 2006). 
 

Mobility (DOF) Independent motion variables Constrained motion variables 

6 xc, yc, zc, θx, θy, θz N/A 

5 xc, yc, zc, θx, θy θz 

4 xc, yc, zc, θz θx, θy 

3 zc, θx, θy xc, yc, θz 

Table 7. Motion constraints of the reconfigurable parallel robot 

5.2 Branch module inverse kinematics 
With the position of the ith spherical joint known as defined by the constraint equations (if 
any), then the inverse kinematics for the ith branch can be solved. As listed in the 
enumeration criteria, the motion of the ith spherical joint must be planar for the constrained 
branch configuration and spatial for the unconstrained branch configuration. This gives rise 
to a planar and spatial solution to the branch kinematics. 
The solution to the ith branch kinematics is generally solved by the use of loop equations. 
That is, a loop of vectors that describes the links, base and platform is established in an 
effort to eliminate specific unknown information and create an algebraic solution to the joint 
variable. These solutions are derived such that it allows for the joint variable solution 
regardless of the configuration of the parallel robot. Thus there is no need to reform the 
kinematic equations when the robot is reconfigured from one configuration to another. 
The following is a description of the loop equations for fixed-tripod branch configurations 
described in Table 5. As seen in Table 5., after reconfiguration there are six different reduced 
DOF branch configurations. Since the kinematics are applicable to the branch regardless of 
the robot configuration, the solutions presented cover all nine potential fixed-tripod branch 
configurations. Also, the detachable branch configuration is also a potential fixed branch 
configuration, thus the kinematics are automatically covered.  

5.2.1 RTUS and U*RTS branch kinematics 
The first branch configuration is that which takes the form of the RTRTS when it is in a 
reduced DOF form. This includes the RTUS and U*RTS branch configurations. As shown in 
Fig. 4., the RTRTS branch module can be related to the extensible model using the following 
relation 
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'

1 2i i i i+ = + +h Rp b l l   (6a) 

or 

 1 2i i i i= + +p b l l   (6b) 

If the first joint is a revolute joint, then the direction vector of the upper arm, denoted by 

1
l

iu , can be defined as 

 1
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α θ
α θ
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u   (7) 

where θi is the driving angle of the l2i arm, and αi is the same as defined in Fig. 3. By 
applying the constraint that the length of the l1i arm is constant, the following equation is 
obtained 

 1 1 2
l

i i i i il l− − =p b u   (8a) 

Alternatively, using di 

 1 1 2
l

i i i il l− =d u   (8b) 

 

 
Fig. 4. Relation of the RTUS and U*RTS branch configurations to the extensible module 
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Using Equation (8a) or (8b), the solution to the inverse kinematics can be solved for the 
planar cases (RTRTS). It can also be used for the RTUS configuration. For the U*RTS 
configuration, the solution to Equations (8a) and (8b) can only be solved if the passive 
rotation axis of the U* joint is axial in nature. In other words, so long as the motion profile of 
the middle RT joint is planar, then the direction vector 1

l
iu  is solvable, and the passive joint 

variable is naturally eliminated from the loop equation. The solution to the case where the 
passive axis of the U* joint is not axial can be viewed in (Sabater et al., 2005). 

5.2.2 PFUS and PFU*S branch kinematics 
The second branch configuration is that which takes the form of the PFRTS when it is in a 
reduced DOF form. This includes the PFUS and PFU*S branch configurations. As shown in 
Fig. 5., the extensible leg can be related to the PFRTS branch module by following loop 
equation 

 '
i i i i+ = + +h Rp b s l   (9a) 

or 

 i i i i= + +p b s l   (9b)  

 
Fig. 5. Relation of the PFUS and PFU*S branch configurations to the extensible module 

Here si is the vector representing the track platform traveling displacement parallel to the 
guide way, noting that bi does not necessarily point to a physical point on the robot. If bi 
were to end at the connection of the base and track, then the vector si does not only change 
in length, but also direction, which is not desirable. Furthermore, li is the vector 
representing the slide in space. Since the track is fixed and si acts parallel to the track, its 
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direction vector, denoted s
iu , is specified. By applying the constraint that the length of the 

track is constant, the traveling distance si can be solved from the following equation 

 s
i i i i is l− − =p b u   (10a) 

which may be expressed in terms of di as 

 s
i i i is l− =d u   (10b) 

With the length of the guide way solved, if the branch is of the PFU*S configuration, then the 
joint variable θi can be solved by solving Equation (9a) or (9b) for li and then using a four-
quadrant arctangent 

 ( )arctan 2 , cos sini iz iy i ix is s sθ π α α= − −   (11) 

The loops Equations (10a) and (10b) can be solved for both the planar and spatial case since 
the direction the sliding arm is eliminated from the equations. 

 

5.2.3 UPVS and U*PVS branch kinematics 
The third branch configuration is that which takes the form of the RTPVS when it is in a 
reduced DOF form. This includes the UPVS and U*PVS branch configurations. As shown in 
Fig. 6., the extensible leg model is the exact solution of the kinematics, thus 

 '
i i i+ = +h Rp b s   (12a) 

or 

 i i i= +p b s   (12b) 

Thus the solution to the extensible leg is simply 

 i i is− =p b   (13a) 

which may be expressed in terms of di as 

 i is=d   (13b) 

 If, the active joint variable is rotational instead of linear, then, a four-quadrant arctangent 
can be used to solve for θi. We note that si = [six  siy  siy]T, then 

 ( )2 2arctan 2 ,i iz ix iys s sθ = +   (14) 

Again, we note that the solution to the loop Equations (12a) and (12b) will hold for both the 
planar and spatial cases. 
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Fig. 6. Relation of the UPVS and U*PVS branch configurations to the extensible module 

5.2.4 PFCS branch kinematics 
The fourth branch configuration is that which takes the form of the PFPVS when it is in a 
reduced DOF form. This includes the PFCS branch configuration. As shown in Fig. 7., the 
PFPVS branch module can be related to the extensible model using the following relation 

 '
1 2i i i i i+ = + + +h Rp b s l l   (15a) 

or 

 1 2i i i i i= + + +p b s l l   (15b) 

The in plane the angle φi is always known since the angles ηi, ξi, and γi are physical 
parameters that are known constants. The direction vector of the upper arm, denoted 
by 2

l
iu , can be defined as 
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u   (16) 

yielding 2 2 2
l

i i il=l u . From this, the vector ei can be found from the modified loop equation 

ei = di – l2i. The angle νi between the vector ei and the guide way can be found using a four-
quadrant arctangent 
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 ( )2 2arctan 2 ,i i iz ix iye e eν η= − +   (17) 

The Sine Law can then be used to find the distance of the track along the guide way and the 
length of the cylindrical joint along it's guide way if necessary. 

 
Fig. 7. Relation of the PFCS branch configuration to the extensible module 

Equation (16) only holds for the planar case. The solution to the kinematics for the spatial 
case must be solved numerically. In Equations (15a) and (15b), there are three unknowns, 
the lengths of si and l1i, and the direction of l2i, and there is no way to eliminate two of these 
unknowns to provide the means to solve the loop equation. It is thus not optimal to use the 
PFCS branch configuration over those with analytical solutions for all kinematic cases and 
we therefore eliminate the PFCS branch as a potential fixed tripod branch configuration. 

5.2.5 CPVS branch kinematics 
The fifth branch configuration is that which takes the form of the PVPVS when it is in a 
reduced DOF form. This includes the CPVS branch configuration. As shown in Fig. 8., the 
PVPVS branch module can be related to the extensible model using the following relation 

 '
i i i i+ = + +h Rp b l s   (18a) 

or 

 i i i i= + +p b l s   (18b) 
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The angles θi and γi are known constants. Since the first joint is a cylindrical joint, the 
direction vector of the upper arm, denoted by 1

l
iu , can be defined using Equation (7). From 

this, the angle ζi between the cylindrical joint guide way and the vector di can be calculated 

 arccos
l
i i

i
i

ζ
•

=
u d

d
  (19) 

The loop equation formed by di = li + si forms a triangle in space. Since the length of di is 
known, and the two interior angles γi and ζi are also known, then the joint variable si can be 
solved for all planar and spatial cases by using the Sine Law. 
 

 
Fig. 8. Relation of the PVPVS branch configuration to the extensible model 

5.2.6 RTCS branch kinematics 
The sixth branch configuration is that which takes the form of the RTPVS when it is in a 
reduced DOF form. This includes the RTCS branch configuration. As shown in Fig. 9., the 
second RTPVS branch module can be related to the extensible model using the following 
relation 

    
'

1 2i i i i+ = + +h Rp b l l                 (20a) 
 

or 
           1 2i i i i= + +p b l l                      (20b) 
 

The angle γi, is a known constant, thus the Sine Law can then be used to find the angle 
between guide way and the vector di, as well as the length of the cylindrical joint along it's 
guide way. 
With the length of both legs known, the loop Equations (20a) and (20b) take on a form 
similar to the loop Equations (6a) and (6b). Equation (7) is then used to define 1

l
iu  and the 
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loop Equation (8a) or (8b) is used to solve for the joint variable. The kinematics can be 
solved for both planar and spatial cases as previously mentioned for these loop Equations. 

 
Fig. 9. Relation of the RTCS branch configuration to the extensible model 

5.3 Detached branch kinematics 
For the detached branches that become 2-DOF serial arms, the inverse kinematics is 
straightforward. When the three detachable branches form a three-fingered gripper, the 
problem falls into that of grasping kinematics (Montana, 1998). Furthermore, the proposed 
system provides an additional advantage in that the detachable tripod can be coordinated 
with the fixed tripod to perform auxiliary tasks such as performing a tool change on the 
moving platform, or using a sensor to scan a part. Again, this adds another level of 
flexibility into the system. 

6. Workspace analysis 
With the kinematics established, the position workspace volume and boundary of the robot 
can be calculated. In each case, a grid of the independent variables as defined in Table 7. is 
searched. The finer the independent variable grid spacing, the closer the estimated 
workspace volume and boundary is to the true workspace volume and boundary. However 
this comes at a computational cost especially with the 5 and 6-DOF cases. At a preliminary 
architecture design phase, accuracy can be traded for low computational cost and faster 
computational time of the robot workspace. As the design evolves to the detailed design 
phase, accuracy is much more important and longer computations are required to achieve 
an accurate workspace volume and boundary. 

6.1 Physical parameters 
The shape and size of a robot's workspace is dependent on its physical parameters such as 
link lengths, joint limits, etc. These parameters may or may not be known at the architecture 
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design phase depending on the requirements of the system. In order to evaluate the various 
configurations, the physical parameters for the base and moving platform are uniform 
throughout. The radius of the base, bi, is 100 mm and the radius of the moving platform, r, is 
50 mm. In the 6-DOF case, the branches are spaced at 60° intervals. The spacing increases as 
necessary when the detachable branches are disconnected from the moving platform. The 
physical constraints for each branch configuration are described in Table 8. 
 

Branch 
Configuration Variable Symbol Value 

Lower arm length l1i 125 mm 

Upper arm length l2i 125 mm 
RTUS and U*RTS 
Fixed Branches1 

Joint variable range θi 0° - 180° 

Guide way inclination ηi 45° 

Arm length li 100 mm 
PFUS and PFU*S 
Fixed Branches 

Joint variable range si 0 mm – 100 mm 

UPVS and U*PVS 
Fixed Branches Joint variable range si 125mm – 200 mm 

Guide way inclination θi 135° 

Joint variable range si 125 mm – 200 mm 
CPVS Fixed 

Branches 
Cylindrical joint linear range li 0 mm – 150 mm 

Arm length l2i 150 mm 

Cylindrical joint inclination angle γi 90° 

Joint variable range θi 0° - 180° 

RTCS Fixed 
Branches 

Cylindrical joint linear range li 0 mm – 150 mm 

Lower arm length l1i 150 mm 

Upper arm length l2i 150 mm 
Detachable 
Branches1, 2 

Joint variable range θi 0° - 180° 
Table 8. Branch physical constraints 
Finally, we ignore the physical constraint that would be imposed due to the presence of the 
spherical joints. In reality, contact between the edge of the socket and the extension of the 
ball would impede further motion and thus affect the shape of the workspace. The 

                                                 
1     To avoid singularities, the z-coordinate of the ith middle joint must be less than the z-
coordinate of the ith di vector. 
2     The lengths of the detachable branch arms are consistent for all fixed branch 
configurations except the RTCS configuration in which both arms lengths are 250 mm. The 
change in length was to provide and an acceptable workspace boundary. 
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alignment of the spherical joints is left to the detailed design phase, as careful design and 
alignment can alleviate this impedance. 

6.2 Workspace 
With the kinematic equations established and the physical parameters defined, the position 
workspace can finally be calculated. Table 9. shows the summary of workspace.  
 

Robot Workspace Volume [mm3] Fixed Branch 
Configuration 3-DOF 4-DOF 5-DOF 6-DOF 

RTUS and U*RTS 7549 13, 778 15, 595 29, 463 

PFUS and PFU*S 15, 368 18, 224 14, 309 17, 265 

UPVS and U*PVS 13, 263 9386 6275 6813 

CPVS 9619 4634 1898 2244 

RTPVS 43 161 2928 6021 

Table 9. Workspace volume of the reconfigurable parallel robot 

 
Fig. 10. Workspace boundaries of the PFUS and PFU*S fixed branch configuration: (a) 3-DOF, 
(b) 4-DOF, (c) 5-DOF, (d) 6-DOF 

(a) (b)

(c) (d)
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Note than the increase in DOF does not necessarily result in an increase in workspace 
volume. This is due to the constraints of the branches and not the kinematic constraints of 
the position and orientation of the moving platform. Also, in the 4 and 5 DOF cases, the 
spacing of the branches is not uniform and results in very odd shaped workspace 
boundaries. An example of the PFUS and PFU*S workspace is shown in Fig. 10. 

7. Optimal configuration 
The optimal configuration depends heavily on the type of task the robot is required to 
perform. Some examples for parallel robotics include: 
• Flight simulation test beds use 6-DOF hydraulically actuated UPVS branches. 
• Machining tool applications use the PFUS branch configuration due to their structural 

stiffness. 
• Pick and place automation use planar Delta robots (specialized RTUS branches). 
We further note that the optimization here is not the optimization of a continuous system. 
Here, there are five discrete systems that require some form of comparison to evaluate their 
strengths and weaknesses. There are many methods of evaluating the merits of discrete 
systems. These usually include some for of design decision matrix and there are many 
works available that covers this topic. All of these methods require a certain degree of 
designer input and different designers will form their decision matrices different. Once an 
architecture is chosen, then continuous optimization algorithms can be used. 
  

 
Fig. 11. Reconfigurable parallel robot currently being developed at Ryerson University: 
(a) 6-DOF, (b) 5-DOF, (c)4-DOF, (d) 3-DOF 

(a)
(b)

(c) (d)
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A very simple a pair-wise comparison of the discrete systems against each of for the 
specified functional requirements is used to arrive at the optimal configuration (Salustri, 
2008). Using this design decision method, the optimal architecture of the parallel robot is the 
PFUS configuration. This robot configuration is currently being developed at Ryerson 
University and is shown in Fig. 11 and the actual prototype is shown in Fig. 12. Also in 
development, is a universal joint capable of locking one DOF in order to satisfy the branch 
constraint requirements previously described. 
 

 
Fig. 12. The prototype of the proposed reconfigurable parallel robot 

8. Conclusion 
A novel method for the architecture design of a reconfigurable parallel robot is presented 
based on common actuation devices. System design techniques are used to classify parallel 
robot modules and enumeration rules are established to determine the feasible robot 
architectures. Branch kinematics are developed and a workspace analysis is performed. An 
optimal design is selected from the remaining discrete robot configurations. The final design 
is a self-reconfigurable parallel robot that has the ability to perform on-the-fly 
reconfiguration. The proposed reconfigurable parallel robot not only provides innovation in 
reconfigurable system design but also stimulates new research into parallel robot 
kinematics. 
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1. Introduction     
Parallel manipulators have the advantages of high stiffness and low inertia compared to 
serial mechanisms. Based on the Steward-Gough platform architecture, a lot of 6-DOF 
mechanical devices have been proposed. The 6-DOF parallel manipulators suffer from a 
small workspace, complex mechanical design, and difficult motion generation and control 
due to their complex kinematic analysis. To overcome these shortcomings, the limited-DOF 
manipulator, which has fewer than 6 DOFs, can be found in many production lines. It is clear 
today that most attention has been paid to 3-DOF family among the limited-DOF parallel 
manipulators (Carretero, 2000). However, in many industrial situations, there is a need for 
equipment providing more than 3-DOFs. For example, for most pick-and-place applications 
in semiconductor manufacturing, at least 4 DOFs are required (3 translation to move the 
carried die from one point to the other, 1 rotation to adjust the orientation in its final 
location). A new family of 4-dof parallel manipulators called H4 that could be useful for 
high-speed pick-and-place applications is proposed by Pierrot and Company (Pierrot, 1999). 
The H4 manipulator offers 3 DOFs in translation and 1 DOF in rotation about a given axis. 
The H4 manipulator is useful for high-speed handling in robotics and milling in machine-
tool industry since it is a fully-parallel mechanism with no passive chain and able to provide 
high performance in terms of speed and acceleration. 
This chapter discusses the kinematic analysis of the H4 manipulator. In section 2, synthesis 
methods for designing H4 are presented, and various possible mechanical architectures of 
the parallel manipulator are exposed. Section 3 discusses the inverse and forward 
kinematics problem of H4. Section 4 deals with singularity analysis of H4 utilizing line 
geometry tools and screw theory. Section 5 concludes this chapter by providing the 
development tendency of the parallel manipulators. 

2. Structural synthesis and architectures 
2.1 General concept of H4  
Parallel manipulators are constituted of a moving platform that is connected to a fixed base 
by several chains (limbs). Generally, the number of limbs is equal to the degrees of freedom 
(DOF) of the moving platform such that each limb is driven by no more than one actuator 
and all actuators can be mounted on or near the fixed base. By acting on the limbs the 



 Parallel Manipulators, Towards New Applications 

 

406 

platform pose (position and orientation) is controlled. Moreover, if the actuators are locked, 
the manipulator will become an isostatic structure in which all the legs carry the external 
loads applied to the platform. This feature makes the parallel manipulators with high 
stiffness possible throughout the whole space. From the first ideas proposed by Gough 
(Gough, 1956) or Steward (Steward, 1965), a lot of interesting mechanical devices or design 
methods have been extensively studied. In the beginning, many structures were based on 
the ingenuity of the researchers and not on a systematic approach. Subsequently, a new 
research domain called structure (or type) synthesis was proposed, in which vaious 
methodologies were tried to generate all the structures that have a desired kinematic 
performance. The most widely used synthesis approaches (and their variants) are graph 
theory, group theory and screw theory (Merlet, 2006). In this section, we will not discuss these 
theoretical problems, but focus on the structure generation of H4. 
The 6-DOF parallel manipulators generally suffer from a small workspace, complex 
mechanical design and difficult motion generation and control due to their complex 
kinematic anslysis. To overcome these shortcomings, new structures for parallel 
manipulators having less than 6-DOF (which are called limited-DOF manipulators in this 
chapter, although many of these new structures were known well before) are explored. 
There is an overriding motivation behind such efforts: limited-DOF manipulators may be 
needed for many applications. For example, parallel wrists need only three rotational DOFs. 
It is clear today that most attention has been paid to 3-DOF family among the limited-DOF 
parallel manipulators (Gosselin & Angeles, 1989; Agrawal et al., 1995; Gosselin & St-Pierre, 
1997; Fattah & Kasaei, 2000; Gregorio, 2001). However, in many industrial situations, there is 
a need for equipment providing more than 3 DOFs arranged in parallel and based on 
simpler arrangements than 6-DOF strctures. The reference (Cheung et al., 2002) developed a 
4-DOF parallel manipulator E4 which could be used in a semiconductor packaging system. 
It is in the early 80’s when Reymond Clavel comes up with the brilliant idea of using 
parallelograms to build a parallel robot with three translational and one rotational degree of 
freedom (Bonev, 2001).  Contrary to opinions published elsewhere, his inspiration was truly 
original and does not come from any parallel mechanism patents. Professor Clavel  called 
his creation the Delta robot. The new family of 4-DOF parallel manipulators called H4 that 
could be useful for high-speed pick-and-place applications is just based on the idea of Delta 
structure (Pierrot & Company, 1999; Company & Pierrot, 1999). The prototype built in the 
Robotics Department of LIRMM can reach 10g accelerations and velocities higher than 5m/s 
(Robotics Department of LIRMM). 

2.1.1 Delta structure 
Even if an incredibly large number of different structures have been proposed by academic 
researchers in the last 30 years, most of these that are used widely in industry can be 
classfied into two basic types: the Delta structure and the so-called “hexapod“ with 6 U-P-S 
chains in parallel (U-P-S: Universal-Prismatic-Spherical). This may be a result of either the 
exceptional simplicity of the Delta 3-DOF solution, or the enormous research effort 
dedicated to “hexapod“ (Company, 1999). 
The basic idea behind the Delta parallel robot design is the use of parallelograms. A 
parallelogram allows an output link to remain at a fixed orientation with respect to an input 
link. The use of three such parallelograms restrain completely the orientation of the mobile 
platform which remains only with three purely translational degrees of freedom. The input 
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links of the three parallelograms are mounted on rotating levers via revolute joints. The 
revolute joints of the rotating levers are actuated in two different ways: with rotational (DC 
or AC servo) motors or with linear actuators. Finally, a fouth leg is used to transmit rotary 
motion from the base to an end-effector mounted on the mobile platform. Fig.1 shows the 
most famous Delta robot with three translation degrees of  freedom, which was initially 
developed at École Polytechnique from Lausanne by Clavel (Clavel, 1988). All the kinematic 
chains of this robot are of the RRPaR type: a motor makes a revolute joint rotate about an 
axis w. On this joint is a lever, at the end of which another joint of the R type is set, with axis 
parallel to w. A parallelogram Pa is fixed to this joint, and allows translation in the direction 
parallel to w. At the end of this parallelogram is a joint of the R type, with axis parallel to w, 
and which is linked to the end effector. 
 

 
Fig.1. The Delta structure proposed by Prof. Clavel and one of its industrial version, the 
CE33 (courtesy of SIG Pack Systems) 

The Delta robot is firstly marked by the two Swiss brothers Marc-Olivier and Pascal 
Demaurex who created the Demaurex company (Bonev, 2001). The joint-and-loop graph of 
the Delta robot and one of its equivalent structures are shown in Fig.2, where P, R and S 
represent prismatic, revolute and spherical joint respectively. The displacement of the end-
effector of the Delta robot is the result of the movement of the three articulated arms 
mounted on the base, each of which are connected to a pair of parallel rods. The three 
orientations are eliminated by joining the rods in a common termination and the three 
parallelograms ensure the stability of the end-effector. It is noted that the rotary actuator 
and lever part of the Delta could be replaced by a linear actuator, as suggested by Clavel 
itself and Zobel (Zobel, 1996). This type of Delta is sometime called a Linapod or a linear 
Delta. 
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Fig.2. Joint-and-loop graph of the Delta robot and one of its equivalent structure 

2.1.2 Structure derivation of H4  
H4 is based on 4 independent kinematic chains between the base and the nacelle, each chain 
is actuated where each actuator is fixed on the base (Pierrot & Company, 1999; Company & 
Pierrot, 1999). Such technological and conceptual ideas have already proven their efficiency 
on high-speed equipment for the Delta robot. So, knowing the advantages of this family of 
mechanisms, it is interesting to recall a few important design features of the Delta robot. The 
Delta robot is based on three actuated linear or rotational joints, and three pairs of rods 
equipped with ball joints at each end. As a matter of fact, two ball joints on each rod 
introduce an internal DOF for the rod which can rotate about its own axis. An arrangement 
such as the one depicted in Fig.3 suppresses these internal DOF and keeps the same global 
behaviour. To go a little further, it is possible to consider each pair of rods (that is: two U-S 
chains parallel one to the other) as equivalent to a unique rod equipped with universal joints 
at each extremity. The admissible motions for both chains are not exactly the same, but they 
can be regarded as “equivalent” in terms of number and type of degrees of motion. 
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Fig.3. The structure of a Delta robot with no internal DOF 
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In order to define the basic principle of a 4-DOF mechanism, the classical kinematics 
formulas can be used. For a mechanism with a “closed loop” (a chain going from ground to 
the nacelle, and then back to ground), its mobility is given by: 

 Ldofm
lN

i
i 6

1
−=∑

=

  (1) 

where L is the number of loops; idof  is the number of DOF of the ith link; lN  is the number 
of links. 
For a fully-parallel 4-DOF mechanisms involving no passive chain, 3=L  and 4=m . Thus: 

( ) 22364
1

=×+=∑
=

lN

i
idof  

The four P-U-U chains provide: dof2054 =× . Thus each additional joint must be only 1 
DOF joint. Two rotational joints can be used because such joints are extremely easy to 
manufacture with good accuracy at low cost. So the arrangement shown in Fig.3 are created, 
each pair is connected to the nacelle by an R joint. Note that the actuated prismatic joints can 
be replaced by actuated rotational joints, and that the U-U chains can be replaced by (U-S)2 
chains as well (shown in Fig.3(b)). To date, the conditions for a 4-DOF machine have been 
set up. The conditions to be fulfilled for obtaining 3 translations and 1 rotation about a given 
axis should be provided. 
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Fig.4. Architecture scheme of H4 

The demonstration of “quasi-equivalence” between P-U-U and P-(U-S)2 is proposed in 
(Company et al., 2003). The following discusses the possible motion of H4 (Pierrot & 
Company, 1999; Company & Pierrot, 1999).  
Firstly, assume that the two rods of the (U-S)2 chains are parallel to each other. Fig.5 shows a 
simple scheme of a possible H4 structure. Ai and Bi are the centers of segments Ai1Ai2 and 
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Bi1Bi2, respectively. Note Ai1Bi1=Ai2Bi2=AiBi and ui=Bi1Bi2. With such notations, the 
impossible motion for the tip of each P-(U-S)2 chain is the rotation about: AiBi×ui.  
 

 

B12
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v
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A41
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Fig.5 A simple scheme of H4 structure 

The link B1B2 is connected to the ground by P-(U-S)2 chains. Each chain provides 3 
translations; thus the link B1B2 can undergo the same translations. Moreover B1B2 cannot 
rotate about A1B1×u1, neither about A2B2×u2 (because the motion that B1B2 cannot make is 
the sum of the impossible motions for each chain). Consequently, B1B2 can only rotate about 
the vector normal to the two previous vectors, namely: 

 ( ) ( )222111 uBAuBA ×××   (2) 

The link B3B4 has 3 DOFs in translation, and can only rotates about: 

 ( ) ( )444333 uBAuBA ×××   (3) 

The link C1C2 is connected, on one side, to B1B2 by a revolute joint whose direction is 
represented by vector v1, on the other side, to B3B4 by a revolute joint whose direction is 
represented by vector v2. Thus, on each side of the nacelle, there are two “meta-chains” 
which have 5 DOFs. The first chain has 3 translations and 2 rotations about v1 and 
( ) ( )222111 uBAuBA ×××  respectively. The rotation about ( ) ( ) 1222111 vuBAuBA ××××  is 
impossible. The second “mecha-chain” has 3 translations and 2 rotations about v2 and 
( ) ( )444333 uBAuBA ×××  respectively. The rotation about ( ) ( ) 2444333 vuBAuBA ××××  is 

impossible. So the possible motions of the nacelle are 3 translations and 1 rotation about 
( ) ( )[ ] ( ) ( )[ ]24443331222111 vuBAuBAvuBAuBA ××××××××× . When the two revolute joints 
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placed on the nacelle have the same direction represented by a unit vector v, the existence of 
a rotational motion about v can be written as follows: 

 ( )[ ] ( )[ ] vvwwvww ααα =×××××≠∃ 43210,   (4) 

Where iiii uBAw ×= . Equation (4) is equivalent to: 

( )[ ] ( )[ ]{ } vvvvwwvww ⋅=⋅××××× α4321  

Since v is a unit vector, then we can obtain 

( )[ ] ( )[ ]{ } 04321 ≠=××××× αvwwvww  

Thus: 

( ) ( )[ ] ( ) ( )[ ] 043212143 ≠=⋅×××−=××⋅× αvwwwwvwwww  

So, the necessary condition that the nacelle can rotate about a given axis is: 

 ( ) ( )[ ] 04321 ≠⋅××× vwwww   (5) 

It should be noted that the previous condition is only a necessary condition and any 
singular configuration is not taken into account. The following should demonstrate that the 
two rods of the P-(U-S)2 chain are parallel to each other when the nacelle moves, so the 
necessary condition (7) is also satisfied. 
The rods of the P-(U-S)2 chain will stay parallel to each other if both links B1B2 and B3B4 
move only in translation with respect to the ground. As a matter of fact, the possible 
motions of the nacelle imply that the two pivots fixed on the nacelle along the direction of 
vector v will keep this direction. Thus the only possible rotation for B1B2 and B3B4 is about 
vector v. But equation (2) indicates that B1B2 can only rotate about 

21 ww × . So, as long as 

21 ww ×  and v are not collinear, the link B1B2 has no possible rotation. A similar remark can 
be made for B3B4, leading to the two following conditions: 

 
vww
vww

≠×
≠×

43

21   (6) 

In conclusion, if conditions (6) are fulfilled, the links B1B2 and B3B4 move only in translation, 
and the rods in a pair will stay parallel to each other. 

2.1.3 H4 mechanism with symmetrical design 
In this chapter, the symmetrical design of H4 refers to the structure scheme based on four 
identical P-U-U chains or P-(U-S)2 chains. The four identical chains provide 4×5=20 DOFs. 
Thus, two additional 1-DOF joints are needed. H4 uses two rotational joints because they are 
easy to manufacture with good accuracy at low cost. Two types of typical architecture 
scheme of H4 are shown in Fig.4. Note that the U-U chains can be replaced by (U-S)2 chains. 
Moreover, the actuated prismatic joints could be replaced by actuated rotational joints as 
well. A symmetrical mechanism with prismatic actuators is show in Fig.6 (a), while an 
equivalent mechanism with rotational actuators is shown in Fig.6 (b). 
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(a) (b) 

 
Fig.6. Symmetrical H4 with actuated prismatic joints and rotational joints 

2.1.3 H4 mechanism with asymmetrical design 
The link B1B2 has three translations and a possible rotation about a vector given by equation 
(2). It is possible to create more advanced mechanisms based on a particular case of equation 
(2). For example, if u1=u2, then equation (2) becomes: 

( ) ( ) 1122111 uuBAuBA β=×××  

As long as 
2211 BABA ≠ , then 0≠β . So the only possible rotation of this link is about vector 

u1. Thus, the first “meta-chain” already fulfilled our requirements: 3 translations and 1 
rotation about a given axis. However, this “meta-chain” is only equipped with 2 actuators; 
thus 2 other chains (with one actuator each) are needed in parallel to lead to a fully-parallel 
manipulator. If the first “meta-chain” is constituted of two P-U-U chains, it provides 2×5=10 
DOFs. So the two additional chains that constitute the second “meta-chain” should be 6  
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Fig.7 Asymmetrical design of H4 



A Novel 4-DOF Parallel Manipulator H4 

 

413 

DOFs, which are obviously compatible with the motions offered by the first “meta-chain”. 
Such mechanical structures are named asymmetrical H4 (Pierrot & Company, 1999; Company 
& Pierrot, 1999). An asymmetrical design of H4 using two P-U-Us and two P-U-S’s is shown 
in Fig.7 (a). The P-U-U’s can be replaced by P-(U-S)2’s, as shown in Fig.7 (b). 

2.2 Evolution of H4  
A new trend in the researches on parallel robotics is the development of lower mobility 
manipulators. Indeed, a lot of applications do not need six DOFs. A classification proposed 
by Brogardh (Brogardh, 2002) gives the necessary number of DOF for different industrial 
applications. He shows that applications such as pick-and-place, assembly, cutting, 
measurement, etc. just need from three up to five DOFs. 
The parallel manipulator H4 can provide three translations and one rotation about a fixed 
axis, which are also called Schonflies motions (Hervé, 1999). SCARA robots were the first 
manipulators developed to produce these movements. Due their serial architecture, these 
robots involve high moving masses which are not suitable for high dynamics. Parallel 
architecture can overcome this problem. Delta robot is first introduced by Clavel to execute 
Schonflies motions (Clavel, 1988). This architecture is able to produce three translations and 
one rotational motion is obtained using a central “telescopic” leg built with universal and 
prismatic joints. This RUPUR chain suffers from a short service life, and involves a bad 
stiffness of the rotation motion. Orthoglide (Chablat, 2002)  is another parallel robot that can 
provide Schonflies motions using linear actuators. Its particularity is to be isotropic at the 
center of its workspace. The machine tool HITA STT has been proposed to produce 
Schonflies motions (Thurneysen et al, 2002). The particularity of this architecture is to use 
additional parts in the traveling plate in order to amplify the rotational motion. Other 
Schonflies motion generators include Gross Manipulator (Angeles et al., 2000), SMG 
(Angeles, 2005), Kanuk and Manta  (Rolland et al., 1999) robots.  
In order to avoid the central telescopic leg of the Delta robot, in 1999, the Montpellier 
Laboratory of Computer Science, Robotics, and Microelectronics (LIRMM) in French 
invented the parallel manipulator H4 which used the concept of articulated traveling plate. 
The rotational movement is obtained using an internal mobility on the traveling plate, and a 
transforming device gives the desired range of rotational motion. Because placing actuators 
in a symmetrical way (i.e. at 90° one relatively to each other) involves “internal singularities” 
(Pierrot & Company, 1999), the robot has to be built using a particular arrangement of 
motors. This non-symmetrical arrangement entails a non-homogeneous behavior in the 
workspace and a limited stiffness of the robot (Company et al., 2005). Later, based on the 
concept of H4, an improved mechanical structure called I4 is proposed by LIRMM (Krut et 
al., 2004; Krut et al., 2003). The internal mobility of I4 is obtained with a prismatic joint (Fig. 
8). The advantage of this architecture is to authorize a symmetrical arrangement of the 
actuators. As demonstrates by Krut (Krut et al., 2004), it is possible to place the actuators at 
90° one relatively to each other. However, this architecture is more adapted to machine-tool 
application than to high speed pick-and-place. Indeed, commercial prismatic joints are not 
suitable for high speed and high accelerations, and have a short service life under such 
conditions. This inconvenient is due to the high pressure exerted on the balls of these 
elements at high acceleration conditions. Based on H4 and I4 architecture, an evolution of 
these mechanisms, named Part 4, has been developed with the wish of reaching high speeds 
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and accelerations (Nabat et al., 2005). A paper written by Nabat (Nabat et al., 2006) 
presented experimental results showing that Part 4 was able to reach an acceleration of 15G. 
Part 4 is a parallel manipulator composed of four closed kinematic chains and an articulated 
traveling plate. The kinematic chains are similar for Delta, H4 and I4, each of which is 
composed of an arm and a spatial parallelogram (forearm) linked with spherical joints. The 
traveling plate is composed of four parts: two main parts (1, 2) linked by two bars (3, 4) with 
revolute joints (see Fig.9). Thus, its shape is a planar parallelogram and the internal mobility 
of this traveling plate is a circular translation. Generally, the “natural “range of the 
rotational operational motion is small, in order to make a complete turn: [-π; π], an 
amplification system has to be added on the traveling plate. Several options are available for 
this amplification such as gears or belt/pulleys. The prototype shown in Fig.9 (b) has been 
built using belt/pulleys system, with the first pulley fixed on one half traveling plate, and 
the second one is linked with a revolute joint to the second half traveling plate. Due to its 
traveling plate having the shape of a planar parallelogram, Part 4 has all the advantages of 
the previous robots, without their drawbacks. The traveling plate of this robot is articulated 
and is exclusively realized with revolute joints. Nabat (Nabat et al., 2006)  has demonstrated 
that it is possible to have the same arrangements of the actuators as I4. Thus, this robot is 
well suited to reach high dynamics and, at the same time, to have a good stiffness and a 
homogenous behavior in the workspace.  
 

 
(a) Overview of I4 prototype  (b) Articulated traveling plate 

 

Fig.8. I4 prototype (courtesy of LIRMM) 

The use of base-mounted actuators and low-mass links allows the traveling plate to achieve 
great accelerations. This makes this type of parallel manipulator a perfect candidate for pick 
and place operations of light objects. Especially for semiconductor end-package equipments, 
which need high-speed and high-precision pick-and-place movement, these parallel 
manipulators provide a novel solution scheme. 
In this chapter, only H4 is considered, because it firstly provides the most important concept 
of traveling plate. Based on the analytical method of H4, other types of evolution structure 
can be analyzed conveniently. 
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 (b) Articulated traveling plate (a) Overview of Part4 prototype  
Fig.9. Part4 prototype (courtesy of LIRMM) 

3. Kinematic analysis 
This section will examine the relations between the actuated joint coordinates of H4 and the 
nacelle (or traveling plate) pose. 

3.1 Inverse kinematics 
The relation giving the actuated joint coordinates for a given pose of the end-effector is 
called the inverse kinematics, which is simple for parallel robots. The inverse kinematics 
consists in establishing the value of the joint coordinates corresponding to the end-effector 
configuration. Establishing the inverse kinematics is essential for the position control of 
parallel robots. There are multiple ways to represent the pose of a rigid body through a set 
of parameters X. The most classical way is to use the coordinates in a reference frame of a 
given point C of the body, and three angles to represent its orientation. But there are other 
ways such as kinematic mapping which maps the displacement to a 6-dimensional 
hyperquadric, the Study quadric, in a seventh-dimensional projective space. The kinematic 
mapping may have an interest as equations involving displacement are algebraic (and the 
structure of algebraic varieties is better understood than other non-linear structures) and 
may have interesting properties, for example, stating that a point submitted to a 
displacement has to lie on a given sphere is easily written as a quadric equation using Study 
coordinates (Merlet, 2006). 

3.1.1 Analytic method 
For a fully-parallel mechanism, each of the chains link the base to the moving platform. If A 
represents the end of the chain that is linked to the base, and B the end of the chain that is 
linked to the moving platform. By construction the coordinates of A are known in a fixed 
reference frame, while the coordinates of B may be determined from the moving platform 
position and orientation. Hence the vector AB is fundamental data for the inverse kinematic 
problem, this is why it plays a crucial role in the solution.  
In order to write the position relationship of H4, consider the robotic structure (see Fig.10, 
chain #4 is not plotted for sake of simplicity). The geometrical parameters of the 
manipulator at hand are defined as follows: 
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• Two frames are defined, namely {A}: a reference frame fixed on the base; {B}: a 
coordinate frame fixed on the nacelle (C1C2); 

• The actuators slide along guide-ways oriented along a unitary vector, zk  ( zk  is the 
unity vector along z axis in the reference frame {A}), and the origin is the point iP , so 
the position of each point iA  is given by: iiii q zPA += , iq  is the moving distance of the 
actuator. The number 4,3,2,1=i  represents each pair of kinematic chains; 

• The parameters dM i , and h are the length of the rods, the offset of the revolute-joint 
from the ball-joint, and the offset of each ball-joint from the center of traveling plate, 
respectively; 

• The position of the end-effector, namely point B , is defined by a position vector 
[ ]zyx=B , and a scalar θ , representing the orientation angle. 

Without losing generality, in this section we consider ( )0,, iii ba=P  for simplicity, zQ  is the 
offset of {A} from {B} along the direction of zk . 
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Fig.10. H4 manipulator with four lines drives and (S-S)2 chains 

The position of points C1 and C2 are given by: 

 ( )( ) ( )( )2211 ,, BCvBCBCvBC θθ RotRot +=+=   (7) 
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Where ( )θ,vRot  denotes the rotation matrix of nacelle with respect to reference frame. The 
position of each point Bi is given by: 

 
42243223

21121111

BCCBBCCB
BCCBBCCB

+=+=
+=+=   (8) 

The position relationship can then be written as: 

 22
iii M=BA   (9) 

Then for the first axis: 

( )( )[ ] 11111111 , zPBCBCvBBA qRot −−++= θ  

 ( ) 2
1111

2
1

2
11 2 dzdBA +⋅−= qq   (10) 

where ( )( ) 11111 , PBCBCvBd −++= θRot . Finally, the two solutions are given by: 

 ( ) 2
1

2
1

2
11111 dzdzd −+⋅±⋅= Mq   (11) 

Similar derivations give the solution for q2, q3 and q4. 

3.1.2 Geometrical method 
The geometrical approach to the inverse kinematics problem is to consider that the 
extremities A, B of each chain have a known position in 3D space. The leg can be cut at a 
point M and two different mechanisms MA, MB constituted of the chain between A, M and 
the chain between B, M can be gotten. The free motion of the joints in these two chains will 
be such that point M, considered as a member of MA, will lie on a variety VA, while 
considered as a member of MB it will lie on a variety VB. If assume the mechanism have only 
classical lower pairs, these varieties will be algebraic with dimensions dA, dB. In the 3D 
space, a variety of dimension d is defined through a set of 3-d independent equations, and 
hence VA, VB will be defined by 3-dA and 3-dB equations. The solutions of the inverse 
kinematic problem lie at the intersection of these varieties. As the number of of solutions 
must be finite (otherwise the robot cannot be controlled), the rank of the intersection variety 
must be 0. In other words, in order to determine the 3 coordinates of the points, 3-dA+3-dB 
should equal to 3 or dA+dB equal to 3 (Merlet, 2006). 
The key problem about the geometrical mthod rests with the choice of the cutting point. For 
the H4 structure shown in Fig.10, Bi are chosen as the cutting points. Points Bi has to lie on a 
sphere centered at Ai with radius Mi, while for the nacelle, the coordinates of Points Bi can 
be described as (8). Hence to obtain the intersection of these 2 varieties the known distance 
between A, B of should be equal to Mi: this equation will give the joint coordinates qi. The 
same results can be obtained as described as (11). 

3.2 Direct kinematics 
Direct kinematics addresses the problem of determining the pose of the end-effector of a 
parallel manipulator from its actuated joint coordinates. This relation has a clear practical 
interest for the control of the pose of the manipulator, but also for the velocity control of the 
end-effector. 
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In general, the solutions for determining the pose of the end-effector from measurements of 
the minimal set of joint coordinates that are necessary for control purposes is not unique. 
There are several ways of assembling a parallel manipulator with given actuated joint 
coordinates, and generally the direct kinematic relationship cannot be expressed in an 
analytical manner. Although various methods have been presented for finding all the 
solutions for this problem and their computation times are decreasing (Faugère, 1995; 
Hesselbach & Kerle, 1995; Gosselin, 1996; Merlet, 2004), it is still difficult to use these 
algorithms in a real time context. Furthermore, there is no known algorithm that allows the 
determination of the current pose of the platform among the set of solutions. The numerical 
methods using a-priori information on the current pose are more compatible with a real-
time context, while their convergence and robustness is an important issue. As direct 
kinematics is an important issue for control, it may be necessary and interesting to 
investigate how to improve the computation time. Besides the progress in algorithms and 
processor speed, one possible approach to solve these problem is to add sensors (i.e. to have 
more than n sensors for a n-DOF manipulator) to obtain information, allowing a faster 
calculation of the current pose of the platform, at the cost of more complex hardware (Bonev 
et al., 2001; Chui & Perng; 2001; Parenti-Castelli, 2001). Merlet has pointed out several 
unsolved problems about the parallel robot’s direct kinematics (Merlet, 2000). Especially the 
algebraic geometry and computational kinematics should bring about enough attention. 
The first step of solving direct kinematics is to determine a bound on its maximal number of 
solution. Then, the equations are reduced for the system to obtain the solution of a 
univariate polynomial whose degree should be determined in the previous analysis. Many 
researchers have tried to obtained closed-form solutions of parallel robots in a univariate 
polynomial equation. Especially, the 3- and 6- DOFs parallel robots, e.g., planar, Delta, 
Steward platform and Hexapod robots, have been mainly considered. This section provides 
a univariate polynomial equation for H4. It is shown that the solutions of the forward 
kinematics yield a 16th degree polynomial in a single variable (Choi et al., 2003). 

3.2.1 Forward kinematics formulation 
The forward kinematics of the H4 is the problem of computing the position and orientation 
of the nacelle (traveling plate) form the motor angles or the moving distance of the actuator. 
To get a closed-form solution, a univariate polynomial equation needs to be solved. The 
following method is extracted from the paper written by Choi (Choi et al., 2003).  
The kinematic structure of H4 is shown in Fig.10 and design parameters are shown in Fig.11. 
The nacelle is composed of three parts (two lateral bars and one central bar). The four points 
B1, B2, B3 and B4 form a parallelogram. Let i

AB  and i
A A  represent the homogeneous 

coordinates of the points Bi in {A} and Ai in {A} respectively. Then the homogeneous 
coordinates of i

AB  and i
A A  can be written as: 
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where 
θcos=xi , θsin=yi , ii hEP 1= , ii dEQ 2= , 11211 −== EE , 11413 == EE , 12421 −== EE , 

12322 == EE . 
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Fig.11. Design parameters of H4 

The kinematic closure of each elementary chain can be written as: 

 22

ii
A

i
A M=BA   (13) 

Consequently, the each chain provides us with the following equation: 

 ( ) ( ) ( ) 2222
iiiiyiixi MqzbQyiPaxiP =−+−+++−+  (14) 

Expanding and rearranging equation (14), the following equation is obtained: 

 0~~~~~
=++++ iiiii EDzCyBxA  (15) 

where, ( )ixii aiPA −= 2~ , ( )iiyii bQiPB −+= 2~ , ii qC 2~
−= , 

( ) 222222 22~
iiiiiyiyixiiiiii MQPbQiQibiaPqbaD −++−−+−++= , 222~ zyxEi ++=  

From equation (15), the four equations become: 

 0~~~~~
11111 =++++ EDzCyBxA  (16) 



 Parallel Manipulators, Towards New Applications 

 

420 

 0~~~~~
22222 =++++ EDzCyBxA  (17) 

 0~~~~~
33333 =++++ EDzCyBxA  (18) 

 0~~~~~
44444 =++++ EDzCyBxA  (19) 

Choosing any three from the above four equations, we can eliminate x2, y2 and z2 
simultaneously and obtain an equation with variables x, y and z. Subtracting equation (18) 
from equation (17) and equation (19) from equation (17) respectively, the following two 
equations are obtained, which are used to eliminate x and y to obtain a polynomial in a 
single variable z. 

 023232323 =Δ+Δ+Δ+Δ DzCyBxA  (20) 

 024242424 =Δ+Δ+Δ+Δ DzCyBxA  (21) 

where, ( )3223
~~ AAA −=Δ , ( )3223

~~ BBB −=Δ , ( )3223
~~ CCC −=Δ , ( )3223

~~ DDD −=Δ , ( )4224
~~ AAA −=Δ , 

( )4224
~~ BBB −=Δ , ( )4224

~~ CCC −=Δ , ( )4224
~~ DDD −=Δ . 

From equation (20) and (21), x and y are solved as: 

 
21

0

1211 ezezx +=
Δ

Δ+Δ
=  (22) 

 
43

0

2221 ezezy +=
Δ

Δ+Δ
=  (23) 

where, 
0

11
1 Δ

Δ
=e , 

0

12
2 Δ

Δ
=e , 

0

21
3 Δ

Δ
=e , 

0

22
4 Δ

Δ
=e , with 232424230 BABA ΔΔ−ΔΔ=Δ , 

2324242311 CBCB ΔΔ−ΔΔ=Δ , 2324242312 DBDB ΔΔ−ΔΔ=Δ , 2423232421 CACA ΔΔ−ΔΔ=Δ , 

2423232422 DADA ΔΔ−ΔΔ=Δ . 

Substituting equations (22) and (23) into equation (17), the following quadratic equation is 
obtained: 

 021
2

0 =++ λλλ zz  (24) 

where, 12
3

2
10 ++= eeλ , 2321243211

~~~22 CeBeAeeee ++++=λ , 24222
2

4
2

22
~~~ DeBeAee ++++=λ . 

From equation (24), z can be calculated as: 

 
0

1

2λ
ρλ +−

=z  (25) 

where, 

 
20

2
1 4 λλλρ −±=  (26) 
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Substituting equations (22), (23) and (25) into equation (16), the following equation is 
obtained: 

 ( ) 0422 2011
2

111
2 =′+′−+′−− λλλλλρλλρ  (27) 

where, 1311143211
~~~22 CeBeAeeee ++++=′λ , 14121

2
4

2
22

~~~ DeBeAee ++++=′λ . 
The variable ρ  can be calculated from equation (27): 

 ( ) 20
2

111 4 λλλλλρ ′−′±′−=  (28) 

So the right parts of equations (26) and (28) are equivalent: 

 ( ) 20
2

120
2

111 44 λλλλλλλλ −±=′−′±′−  (29) 

By taking the second power of the both sides of equation (29), a polynomial equation with 
variables xi  and 

yi  can be obtained as follows: 

 ( )[ ] 02
20212110 =Δ⋅+′−′⋅Δ λλλλλλλλ  (30) 

where, 111 λλλ ′−=Δ , 222 λλλ ′−=Δ . Equation (20) can be rewritten as (Choi et al., 2003): 

( ,,,,,,,,,,,,,,,,,,,,,, 53433323334434244435255526667778
yxyxyxyxyxxyxyxyxyxxyxyxyxxyxyxxyxyxxx iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiif  

 ) 0,,,,,,,,,,,,,,,,,, 40302000065432625242322222 =yxyxyxyxyxyxyxyxyxyxyxxyxyxyxyxyxyxx iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  (31) 

where ( )nxxxf ,, 21  represents a linear combination of nxxx ,, 21 . The coefficients of 

equation (30) are all constant quantities which depend on the geometric parameters of the 
H4 robot. 
Using the following well-known trigonometric function: 

 
2

2

1
1

T
Tix +

−
= , 

21
2

T
Tix +

=  (32) 

where ( )2tan θ=T , then equation (31) becomes a polynomial equation in a single variable T 
which contains terms up to the 16th power. This means that the mechanism may have up to 
16 different configurations for a given set of actuator’s position. Substituting equation (32) 
into equations (26), (22), (23) and (25), the values of yx,,ρ  and z can be gotten respectively. 

3.2.2 Numerical example 
In this section, a numerical example for the H4 robot shown in Fig.10 and Fig.11 is presented 
to illustrate the application of the method proposed in the previous section. The design 
parameters of H4 is chosen as: h=d=6, Qz=42, v=[0 0 1]T, M1=M2= 3 Qz, M3=M4= 2 Qz, the 
origin coordinates of points Ai and Bi are set as following: 

[ ]048481 −−=A , [ ]42661 −−−=B , [ ]048482 −=A , [ ]42662 −−=B ,  
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[ ]04863 =A , [ ]42663 −=B , [ ]06484 −=A , [ ]42664 −−=B , 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
==

0000
1011

0111

4321 uuuuu , where 
21 iii BBu = . 

When the position and orientation of the nacelle are set x=5, y=-5, z=-30, θ=π/6(rad), four 
actuators’ position which is calculated by inverse kinematics are given by: 

 q1=13.021, q2=-7.488, q3=9.679, q4=15.770  (33) 

For the actuators’ position given by equation (33), Matlab Symbolic Math Toolbox is used to 
solve the polynomial equation with variable T. The results indicate that there are only 
twelve solutions, the author believes that there are several repeated roots. This result needs 
further study. The two real roots are T=0.268 and T=-2.882 respectively. When set T=0.268, 
the configuration of the nacelle is calculated as: x=5mm, y=-5mm, z=-30mm, θ=0.524(rad), 
which is the expected solutions. When set T=-2.882, the configuration of the nacelle is 
calculated as: x=3mm, y=-7.95mm, z=-14.58mm, θ=-2.47(rad). This configuration cannot be 
realized in practice because of the mutual interference of the parallelograms as shown in 
Fig.11. 

3.3 Jacobian matrix 
Jacobian matrix relates the actuated joint velocities to the end-effector cartesian velocities, 
and is essential for the velocity and trajectory control of parallel robots. For parallel 
manipulators, their inverse Jacobian matrix can be established without a very high 
complexity, but their Jacobian matrix cannot be obtained directly, even with the help of 
symbolic computation, except in some particular cases (Bruyninckx, 1997; Pennock & 
Kassner, 1990). Theoretical analytic formulations of jacobians have been proposed, but 
require complicated matrix inversions (Dutré et al., 1997; Kim et al., 2000). Generally, the 
difficulty of the inversion does not lie in the complexity of the algorithm but in the sheer size 
of the result (Merlet, 2006). 
The velocity of the nacelle can be defined by resorting to a velocity for the translation, 

[ ]zyxB =v  and a scalar for the rotation about v, θ . Thus, the velocity of points C1 and C2 
can be written as follows (Pierrot & Company, 1999): 

11
Cvvv BBC ×+= θ   22

Cvvv BBC ×+= θ  

Moreover, since the links B1B2 and B3B4 move only in translation, the following relations 
hold: 

121 CBB vvv ==   
243 CBB vvv ==  

On the other hand, velocity of points Ai is given by: 

iiA q
i

zv =  

where zi is the unit vector along the direction of prismatic. The velocity relationship can then 
be written thanks to the classical property: 
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 iiBiiA ii
BAvBAv ⋅=⋅   (34) 

Equation (34) can be written for i=1,…,4 and the results grouped in a matrix form, such as: 

xJqJ xq =  

where 

( )
( )

( )
( )⎥
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⎥
⎥

⎦

⎤
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⎢
⎢

⎣

⎡

⋅
⋅

⋅
⋅

=

444
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000
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zBA
zBA

zBA
zBA

J q

 

[ ]Tqqqq 4321=q  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢
⎢

⎣

⎡

⋅×
⋅×
⋅×
⋅×

=

vBCBABABABA
vBCBABABABA
vBCBABABABA
vBCBABABABA

J

244444444

233333333

122222222

111111111

zyx

zyx

zyx

zyx

x

 

[ ]θzyx=x  

If the mechanism is not in a singular configuration, the inverse Jacobian matrix is described 
as: 

 
xq JJJ 11 −− =    (35) 

And the Jacobian matrix is: 

 
qx JJJ 1−=  (36) 

When the determinant of inverse Jacobian matrix equals to zero, the parallel manipulator is 
in a singular configuration, which is a general method for identifying the singular 
configurations of parallel manipulators. But for a manipulator with n<6DOF, it should be 
noted that it may not be efficient to identify all the singular configurations by determining 
only the n×n inverse kinematic Jacobian that relates the actuated joint velocities to the 
possible DOF velocities. Next section will discuss an inverse kinematic Jacobian that 
involves actuated joints velocities and the full twist of the end-effector, which may be 
essential for singularity analysis. This type of matrix is coined as overall jacobian by Joshi 
(Joshi & Tsai, 2002), while Merlet called it a full inverse kinematic jacobian (Merlet, 2006). 

3.4 Determination of the joint velocities and twist 
The purpose of this section is to calculate the actuated joint (or end-effector) velocities, being 
given the end-effector (or actuated joint) velocities. 
In the previous section, equation (35) can be applied to compute the actuated joint velocities 
directly. For example, the structure and design parameters of H4 is described in Fig.10 and 
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Fig.11, where the following parameters are chosen as described in section 3.2.2. So, 
according to equation (35), the inverse Jacobian matrix can be expressed as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−

=−

0101
6110

6111
6111

1J
 

This inverse Jacobian matrix can be used to calculate the actuated joint velocity directly 
when the pose of the nacelle is shown in Fig.11. 
It is usually difficult, even for robots with less than 6-DOFs robots, to invert J-1 analytically. 
So a numerical procedure will be needed to calculate the twist of the nacelle from the joint 
velocities. For a given pose of the end-effector, there are two methods to determine the 
Jacobian matrix, namely, a numerical inversion algorithm and the quasi-Newton scheme 
(Reboulet, 1985; Merlet, 2006). 

 ( )kkk JJqJJJ 1
01

−
+ −+=  (37) 

where q  is the actuated joint velocity; J0 denotes the kinematic jacobian matrix calculated 
for a given pose. The algorithm stops when the differences between the joint velocities and 
those that are calculated from the twist are lower than a fixed threshold. 
For the H4 structure and design parameters described above, when the actuated joint 
velocities is [ ] [ ]11114321 −== qqqqq , the speed of the nacelle can reach 

[ ] [ ]125.05.025.05.0 −−== θzyxx . 

3.5 Accelerations analysis 
This section will determine what are the relations between the actuated joint accelerations 
and the cartesian and angular accelerations of the end-effector. H4 presents excellent 
characteristics as to acceleration which can reach 10g. For parallel robots it is generally easy 
to obtain these relations directly. From the equation xJq 1−= , the following can be obtained 
by differentiation 

 xJxJq 11 −− +=  (38) 

For the various categories of parallel manipulators, the determination of the acceleration 
equations thus amounts to the determination of the derivative of the inverse kinematic 
jacobian matrix (Merlet, 2006).  
But for H4, the method described above is not intuitionistic. So we derive the relations 
between the actuated joint accelerations and the accelerations of the end-effector using 
geometric method. From equation (12), accelerations of the point Bi and Ai in {A} can be 
obtained as: 

 [ ]
[ ]TiA

T
iiB

qa
zhEyhExa

i

i

00
sincos 11

=
⋅−⋅−= θθθθ   (39) 

The acceleration projection of points Bi and Ai on the line AiBi is equal. So the following 
equation comes into existence: 
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iiBiiA ii

aa BABA ⋅=⋅   (40) 

Equation (40) can be written for i=1,…,4 and the results grouped in a matrix form, such as: 

 xJqJ aq =   (41) 

where 

[ ]Tqqqq 4321=q  
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J
 

[ ]θzyx=x  

For the H4 structure and design parameters described above, when the nacelle is in the 
origin pose and the actuated joint accelerations are [ ]10101010 −=q m/s2, the linear 
acceleration of the nacelle can reach 23m/s2 and the angular acceleration can reach 
2.5rad/s2. 

3.6 Kinetostatic performance indices 
3.6.1 Manipulability 
The inverse kinematic jacobian matrix reflects a linear relation between the manipulator 
accuracy xΔ  and the measurement errors qΔ  on q . If the measurement errors are bounded, 
then the hyper-sphere in the joint error space can be mapped into an ellipsoid in the 
generalized Cartesian error space with using the Euclidean norm. This ellipsoid is usually 
called the manipulability ellipsoid. If using the infinity norm, the joint errors are restricted to 
lie in a hyper-cube in the joint error space. The hyper-cube in the joint error space can be 
mapped into the kinematic polyhedron in the positioning errors space (Merlet, 2006). The 
shape and volume of the manipulability ellipsoid and the kinematic polyhedron 
characterize the manipulator dexterity. It is necessary to set up some kinetostatic 
performance indices that are used to quantify the dexterity of a robot. The famous 
Yoshikawa’s manipularity index TJJ  is used for serial robots for a long time. Another index 
is the condition number that is often used for parallel robots. 

 JJ 1−=κ   (42) 

The condition number expresses how a relative error in joint space gets multiplied and leads 
to a relative error in work space. The condition number is dependent on the choice of the 
metric norm and the most used norms are the 2-norm and the Euclidean norm. The 
condition number is mentioned as the main index for characterizing the accuracy of parallel 
robots. But there is major drawback to the condition number for H4, since the elements of 
the matrix corresponding to translations are dimensionless, whereas those corresponding to 
the rotations are lengths. A direct consequence is that the condition number has no clear 
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physical meaning, as the rotations are transformed arbitrarily into “equivalent” translations 
(Merlet, 2006). There are various proposals that have been made to avoid this drawback 
(Gosselin, 1990; Kim & Ryu, 2003). But all these proposals have their own special 
drawbacks. How to design a general law for parallel robots’ manipulability is still an open 
problem.   

3.6.2 Isotropy 
Poses with a condition number of 1 are called isotropic poses, and robots having only such 
type of poses are called isotropic robots (Merlet, 2006). At the given pose as shown in Fig.11, 
the condition number of H4 is about 8.56 and there is no any isotropic poses in the 
workspace of H4 (Company et al., 2005). While Part4 robots which are the evolutional 
structure of H4 are isotropic at their original poses. 
There are some other manipulability and accuracy indices, such as global conditioning 
index, uniformity of manipulability and maximal positioning error index et al.  All the 
above definitions of the kinetostatic indices do not take into account other factor affecting 
the accuracy of parallel robots, such as manufacturing tolerances, clearance and friction in 
the joints. In order to include these factors in accuracy analysis, Monte Carlo statistical 
simulation technique can be used to evaluate the accuracy of parallel manipulators (Ryu & 
Cha, 2003). 

4. Singularity analysis 
This section will identify all the singular configurations of the H4 and analyze the 
manipulator’s self-motion when in or closed to a singular configuration. Generally, singular 
configurations refer to particular poses of the end-effector, for which parallel robots lose 
their inherent infinite rigidity, and in which the end-effector will have uncontrollable 
degrees of freedom. But for this new family of parallem manipulator H4, singularities are 
associated with either loss or gain of DOF. This section utilizes line geometry tools and 
screw theory to deal with singularity analysis of H4. Firstly, the basic theory including in the 
process of singularity analysis is introduced briefly. Then the static equilibrium condition of 
the end-effector is derived to obtain the full inverse kinematic jacobian 6×6 matrix, which is set 
of governing lines of the manipulator. Based on linear dependency of these lines, the 
singular configurations of the manipulator can be identified. Moreover, in order to deal with 
singularities associated with loss of DOFs (serial singularity), the static equilibrium of the 
actuators is also defined. Secondly, architecture and constraint singularities associated with 
gain of DOFs (parallel singularity) are defined and analyzed using linear complex 
approximation algorithm (LCAA), which is employed to obtain the closest linear complex, 
presented by its screw coordinates, to the set of governing lines. The linear complex axis and 
pitch provide additional information and a better physical understanding of the 
manipulator’s self-motion when in or closed to a singular configuration. Lastly, various 
singularities of an example H4 manipulator are presented and analyzed using the proposed 
methods (Wu et al., 2006). 

4.1 Basic theory 
In the context of designing a parallel manipulator, understanding the intrinsic nature of 
singularities and their relations with the kinematic parameters and the configuration spaces 
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is of great importance. The phenomena of singularity in parallel manipulators have been 
approached from different points of view. One way to introduce singular configurations is 
to examine the relations obtained for inverse kinematics. Singularities correspond to the 
roots of the parallel manipulator Jacobian’s determinant. Based on the rank deficiency 
associated with the Jacobian matrices, singularities of parallel manipulators have been 
explained (Gosselin &Angeles, 1990; Zlatanov et al., 1994). Using the linear decomposition 
method and co-factor expansion, St-Onge and Gosselin (St-Onge & Gosselin, 2000) studied 
the singularity loci of the Gough-Steward platform, and obtained a graphical representation 
of these loci in the manipulator workspace. Due to the complexity of the kinematic model, 
several authors proposed numerical methods to analyze the singularities (Feng-Cheng 
&Haug, 1994; Funabashi & Takeda, 1995). However, even with symbolic computation 
software, the calculation of the determinant of Jacobian matrix is a complicated task. 
Moreover, identifying kinematic singularity through matrices does not provide physical 
insight into the nature of singular configuration of parallel manipulators. 
A parallel manipulator is naturally associated with a set of constraint functions defined by 
its closure constraints (geometric relations of the closed-chain mechanism). The differential 
forms arising from these constraint functions completely characterize the geometric 
properties of the manipulator. So Liu et al. (Liu et al., 2003) used differential geometric tools 
to study singularities of parallel mechanisms and provided a finer classification of 
singularities. In their works, they classified singularity into configuration space singularities 
and parametrization singularities which include actuator and end-effector singularities as 
their special cases. But the method is too abstract and complicated when dealing with 
singularities of spatial parallel manipulators. 
Another approach to analyze the parallel manipulators’ singularity is based on line 
geometry and screw theory. Merlet (Merlet, 1992) considered the Jacobian matrix of the 
Gough-Steward platform as the Plücker line coordinates of the robot’s actuators and 
identified the singular configurations of the robot. In (Romdhane et al., 2002), a mixed 
geometric and vector formulation is used to investigate the singularities of a 3-translational-
DOF parallel manipulator. In (Collins, 1995), singularities of an in-parallel hand controller 
for force-reflected teleoperation were analyzed, the six columns of the Jacobian matrix were 
viewed as zero-pitch wrenches (lines) acting on the top platform, then line geometry and 
rank determining geometric constructions were used to obtain all configuration 
singularities. Basu and Ghosal (Basu & Ghosal, 1997) presented a geometric condition to 
deal with the singularity analysis associated with gain of DOF in a class of platform-type, 
multi-loop spatial manipulators. Joshi and Tsai (Joshi & Tsai, 2002) developed a 
methodology for the Jacobian analysis of limited-DOF parallel manipulators by making use 
of the theory of reciprocal screws. A 6×6 Jacobian matrix so derived provided information 
about both architecture and constraint singularities. 
The present investigation identifies all the singular configurations of the H4 robot and 
provides physical insight into the nature of these singular configurations from the view 
point of geometry. Moreover, the behavior in these singular configurations or in the 
neighboring ones is also determined using linear complex approximation. All these analyses 
need some basic theories, include Grassmann geometry, Line geometry and Screw theory 
etc. The following gives a brief presentation of these theories. 
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4.1.1 Line geometry and Plücker coordinates 
Line geometry investigates the set of lines in three-space. The ambient space can be a real 
projective, affine, Euclidean or a non-Euclidean space. Line geometry possesses a close 
relation to spatial kinematics (Bottema & Roth, 1990) and has therefore found applications in 
mechanism design and robot kinematics. A parallel manipulator has a singular position if 
the axes of its hydraulic cylindrical legs lie in a linear complex, a special three-parameter set 
of lines. In practice, several sources for errors (manufacturing, material properties, 
computing, etc.) can hardly be avoided. Thus, the question is whether the lines on the 
objects near their realization are close – within some tolerance – to the lines of a linear 
complex. This is an approximation or regression problem in line space (Helmut et al., 1999). 
In real Euclidean space E3, a Cartesian coordinate system is used and the points are 
represented by their coordinate vectors M. A straight line L can be determined by a point  

L∈p  and a normalized direction vector l  of L, i.e. 1=l . To obtain coordinates for L, one 

forms the moment vector 

 lpl ×=:   (43) 

with respect to the origin. If p is substituted by any point q=p+λl on L, equation (43) implies 
that l  is independent of p on L. The six coordinates ( )ll,  with 

( )321 ,, lll=l , and ( )654 ,, lll=l  

are called the normalized Plücker coordinates of L. The set of lines in E3 is a four-dimensional 
manifold and accordingly the six Plücker coordinates satisfy two relations. One is the 
normalization and the other is, by equation (43), the so-called Plücker relation 

 0=⋅ ll   (44) 

which expresses the orthogonality between l  and l . Conversely, any six-tuple ( )ll,  with 

1=l , which satisfies the Plücker relation 0=⋅ ll  represents a line in E3. As the orientation 

are not concerned, ( )ll,  and ( )ll −− ,  describe the same line L. 
The topic about the Klein mapping and special sets of lines can refer to the paper written by 
Pottmann et al. (Pottmann et al., 1999). 

4.1.2 Grassmann geometry 
As shown in the previous section, two lines with Plücker coordinates [ ]111 ,qpl = , [ ]222 ,qpl =  
intersect if and only if 02211 =⋅+⋅ pqqp .  Plücker vectors with 0=p  do not represent real 
lines and are associated with a line at infinity. All lines at infinity belong to a plane, the 
plane at infinity. A point may also be represented by the Plücker coordinates (α, r) so that its 
coordinates are r/α. If α=0, then the point is at infinity, and a point (0, r) at infinity is on the 
line at infinity (0, q) if and only if r·q=0. Consequently a point at infinity that belongs to the 
two lines at infinity (0, s1), (0, s2) has coordinates (0, s1×s2).  
The columns of the full inverse kinematic jacobian matrices of most parallel robots are 
constructed from the Plücker vectors of lines associated with links of the manipulator. The 
singularity of this matrix therefore means that there will be a linear dependence between 
these vectors. Grassmann showed that linear dependence of Plücker vectors induced 
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geometric relations between the associated lines, so that a set of n Plücker vectors creates a 
variety with dimension m<n. A thorough introduction to Grassmann geometry please refers 
to (Pottmann et al., 1999). The applications of Grassmann geometry can be found in 
references (Collins & Long, 1995; Hao & McCarthy, 1998; Wu et al., 2006). 
Using the Grassmann’s geometrical conditions, an algorithm for finding the singular 
configurations of any type of parallel robot whose full inverse kinematic jacobian consists of 
Plücker vectors should be designed. Firstly consider all sets of n lines that are associated 
with the Plücker vectors constructed from full inverse kinematic jacobian matrices, and then 
the pose of the moving platform is determined so that the n lines satisfy one of the 
geometrical conditions which ensure that they span a variety of dimension n-1, thereby 
leading to a singularity of the robot. The following list the geometric conditions that ensure 
that the dimension of the variety spanned by a set of n+1 Plücker vectors is n, for each 
possible dimension n of the variety (Merlet, 2006). It should be noted that the notation of 
intersecting lines also include parallel lines which intersect at infinity. To consider the 
reading convenience, the following results is excerpted from the monograph written by 
Merlet (Merlet, 2006). 
 

dimension 

3 

2 

1 

a b c d

 
Fig.12. Geometrical conditions that characterize the varieties of dimension 1, 2 and 3 (Merlet, 
2006) 

For the variety of dimension 1 (called a point) there is just one Plücker vector and one line. 
A variety of dimension 2, called a line, may be constituted either by two Plücker vectors for 
which the associated lines are skew, i.e. they do not intersect and they are not parallel, or be 
spanned by more than two Plücker vectors if the lines that are associated with the vectors 
form a planar pencil of lines, i.e. they are coplanar and possess a common point (possibly at 
infinity, to cover the case of coplanar parallel lines). A variety of dimension 3, called a plane, 
is the set of lines F that are dependent on 3 lines F1, F 2, F 3. It is possible to show that all the 
points belonging to the lines F lie on a quadric surface Q. This quadric degenerates to a pair 
of planes P1, P2 if any two of the three lines intersect. 
– condition 3d: all the lines are coplanar, but do not constitute a planar pencil of lines; F1, 

F 2, F 3 are coplanar and P1, P2 are coincident. 
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– condition 3c: all the lines possess a common point, but they are not coplanar; F1, F 2, F 3 
intersect at the same point, possibly at infinity (this covers the case of parallel lines). 

– condition 3b: all the lines belong to the union of two planar pencils of non coplanar 
lines that have a line L in common; two of the lines intersect at a point p, and L intersect 
the last line at a. Two different cases may occur: 
• P1, P2 are distinct and intersect along the line L. The set of dependent lines are the 

lines in P1 that go through a, and the lines in P2 that go through p 
• P1, P2 are distinct and parallel. This occurs if two of the lines Fi are parallel; L is a 

line at infinity, and the set of dependent lines are two planes of parallel lines 
– condition 3a: all the lines belong to a regulus; F1, F 2, F 3 are skew. 
A variety if dimension 4, called a congruence, corresponds to a set of lines which satisfies 
one of the following 4 conditions: 
– condition 4d: all the lines lie in a plane or meet a common point that lies within this 

plane. This is a degenerate congruence. 
– condition 4c: all the lines belong to the union of three planar pencils of lines, in different 

planes, but which have a common line. This is a parabolic congruence. 
– condition 4b: all the lines intersect two given skew lines. This is a hyperbolic 

congruence. 
– condition 4a: the variety is spanned by 4 skew lines such that none of these lines 

intersects the regulus that is generated by the other three. This is an elliptic congruence. 
A variety of dimension 5, called a linear complex, is defined by two 3-dimensional vectors 
( )cc,  as the set of lines L with Plücker coordinates ( )ll,  such that 0=⋅+⋅ lclc . The complex 
may be: 
– condition 5b: all the lines of the complex intersect the line with Plücker coordinates 

( )cc, , namely, 0=⋅ cc . This is a singular configuration. 
– condition 5a: 0≠⋅ cc . This is a general or non singular configuration. 
The degree of freedom associated with a linear complex is a screw motion with axis defined 
by the line with Plücker vector ( ) cccc p−, , where ccc ⋅=p  is the pitch of the motion.  
 

 4a 4b 4c 4d 5a 5b

 
Fig.13. Geometrical conditions that characterize the varieties of dimension 4 and 5 (Merlet, 
2006) 

4.1.3 Screw theory 
According to screw theory, the instantaneous velocities of a rigid body can be described by a 
6-dimensional vector of the form ( )vω, , where ω  is the angular velocity of the rigid body, 
and v  is its translational velocity. These elements are called velocity twists or screws. Forces 
and torques exerted on the rigid body are important for motion and may be represented as a 
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couple of 3-dimensional vectors ( )MF,  called a wrench. A twist and a wrench will be said to 
be reciprocal if  

 0=⋅+⋅ ωMvF   (45) 

When a kinematic chain is connected to a rigid body the key point is that the possible 
instantaneous twists for the rigid body are reciprocal to the wrenches imposed by the 
kinematic chains (called the constraint wrenches). In other words, the DOF of the rigid body 
are determined by the constraint wrenches. So based on linear dependency of the constraint 
wrenches, the singular configurations can be identified. Another function of the screw 
theory is the mobility analysis (Li & Huang, 2003). 

4.2 Static analysis of the H4 
When deriving the Jacobian matrix of the H4 using the velocity-equation formulation 
described in section 3.3, the result is a 4×4 Jacobian matrix because of the 4-DOF of the 
manipulator. However, it is not clear as to this is the best way to express the Jacobian of this 
type of limited-DOF parallel manipulator when singular analysis is processed. Because this 
approach is valid for general-purpose planar or spatial parallel manipulators, for which the 
connectivity of each serial chain (limb) is equal to the mobility of the end effector, it is not 
necessary true for parallel manipulators with less than 6-DOF (Joshi & Tsai, 2002). For 
example, this approach leads to a 3×3 Jacobian matrix for the 3-UPU parallel manipulator 
assembled for pure translation (Tsai, 1996; Tsai & Joshi, 2000). However, such a 3×3 Jacobian 
matrix cannot predict all possible singularities. Di Gregorio and Parenti-Castelli (Di 
Gregorio & Parenti-Castelli, 1999) analyzed the singularities of the 3-UPU translational 
platform. They derived the conditions for which the actuators cannot control the linear 
velocity of the moving platform, generally known as architecture singularities. Bonev and 
Zlatanov also found that under certain configurations the 3-UPU translational platform 
would gain rotational DOFs, which was called constraint singularities (Bonev and Zlatanov, 
2001). Constraint singularities occur when the limbs of a limited-DOF parallel manipulator 
lose their ability to constrain the moving platform to the intended motion. 
The 4×4 Jacobian matrix of the H4 cannot predict all possible singularities. Under certain 
configurations the chains of the H4 parallel manipulator lose their ability to constrain the 
moving platform to the intended motion, and the nacelle will gain additional DOF(s). So it is 
necessary to derive a full 6×6 matrix of the robot. In order to obtain the full 6×6 matrix, 
including the moments of constraints, one can express the set of static equilibrium 
conditions of the nacelle. These expressions result in a 6×8 matrix that maps the external 
wrench acting on the nacelle to the moments of the internal forces that are generated by the 
(S-S)2 chains. Taking into account the constraint relations between the (S-S)2 chains, we can 
derive a 6×6 matrix. This matrix’s rows describe the six governing lines, from which the 
manipulator’s singularities are obtained. 
The structure and the geometrical parameters of the manipulator are shown in Fig.10. The 
static analysis of H4 manipulator can be divided into two parts. One regards the static 
equilibrium of the nacelle with 21BB  and 43 BB . The second deals with the static equilibrium 
conditions of the parallelograms which are composed of P-(S-S)2 chains. For a P-(S-S)2 chain, 

iiiiii BABABA == 2211 , iA  and iB  are centers of segments 11 ii BA  and 22 ii BA . Every chain 
has 5 DOFs, and provides the same type: 3 translations and 2 rotations. Since both rods 
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11 ii BA  and 22 ii BA  are considered as plain solids, the impossible motion is the rotation about 
the vector: iii uBA × , where 21 iii BBu = . Observing the structure of the parallel part of the (S-
S)2 chain in Fig.2, one can detect that due to the spherical joint, there are moments exerted 
by the rods to iB  (the direction is along iii uBA × ) and forces to iB  (the direction is along 

ii AB ), the static equilibrium for the ith chain is given by (see Fig.14): 
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Fig.14. Forces and moments transmitted to the nacelle 
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where B
A R  is a rotation matrix, which expresses the orientation of the nacelle with respect 

to the fixed reference frame; ir  is a vector connecting B  to iB ; iS  and if  are the unit 
direction vectors and the internal forces acting on iB  in the direction of ii AB  respectively; 

niS  and mi are the unit direction vectors and the internal moments acting on the iB  in the 
direction of iii uBA × . Writing equation (46) in a matrix form yields: 
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the matrix in the left of equation (47) is a 6×8 matrix. In order to obtain the 6×6 matrix, the 
constraint relations between )4,3,2,1(, =imf ii  should be analyzed. 
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Link 21CC  is connected, on one side, to 21BB  by a revolute joint whose direction is 
represented by vector 1v , on the other side, to 43 BB  by a revolute joint whose direction is 
represented by vector 2v . Thus, we can consider two 5-DOF “meta-chains” on each side of 
the nacelle. Those “meta-chains” have the following properties (Pierrot & Company, 1999): 
• First “meta-chain”: the rotation about ( ) 121 vSS ×× nn  is impossible. 
• Second “meta-chain”: the rotation about ( ) 243 vSS ×× nn  is impossible. 
So, the moment’s direction exerted by 21BB  to 21CC  is along ( ) 121 vSS ×× nn , and the 
moment’s direction exerted by 43 BB  to 21CC  is along ( ) 243 vSS ×× nn . The static equilibrium of 

21CC  is given by (see Fig.15): 
 

 
 

Fig.15. Forces and moments transmitted to C1C2 
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are the internal force vectors acting on the points 1C  and 2C , 1Cm  and 2Cm  are moments 
transmitted to 21CC ; 1CS  and 2CS  are the unit vectors along the direction of ( ) 121 vSS ×× nn  
and ( ) 243 vSS ×× nn  respectively. 
Introducing expressions (49) into equation (48) becomes as follows: 
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Writing equation (50) in a matrix form yields: 
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where 
2211 , BClBCl == . The forces and moments at the robot joints due to external load are 

given by: 
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Investigating the transformation matrix SJ  given in equation (52), one can analyze the 
singularity of the parallel part. The columns of SJ  are lines lying on the Klein quadric 4

2M , as 
they satisfy Klein’s equation (Hunt, 1978): 

 0635241 =++ llllll  (53) 

where each column of equation (53) is represented by its Plücker line coordinates given by 
( )Tllllll 654321 ,,,,, . 
Moreover, considering the forces and moments exerted on the actuator, one can obtain (see 
Fig.16). 

 iipiizi f Skk =+στ   (54.1) 

 iiif τθ =cos   (54.2) 

 iiif σθ =sin   (54.3) 

 izi Sk ⋅=θcos   (54.4) 

where pik  is the unit vector along the direction ( )iz uk × . Equation (54.2) can be written for 

i=1,2,3,4, and the results grouped in a matrix form, iτ  can be written as: 
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where 
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Fig.16. Parallelogram static analysis 

SJ  (equation (52)) and PJ  (equation (56)) provide the information about the singularities of 
the H4 manipulator. The analysis of SJ  provides the singularity of the parallel part of H4 
robot known as the “parallel singularity” and PJ  provides the singularity due to the 
parallelogram structure, known as the “serial singularity”. In (Liu et al., 2003), the 
singularity caused by PJ  is also called as “actuator singularity”. 
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Fig.17. Serial singularity of H4 manipulator 

Observing PJ  one can see that singularity occurs whenever ki ππθ += 2  (k=1,…,n, 
i=1,2,3,4). In this case one or more columns of PJ  are zero and the nacelle can’t move in the 

iS  direction, namely, the manipulator losses a DOF. Fig.17 shows the serial singularity of 
H4 manipulator. 

4.3 The behavior of the H4 manipulator in parallel singular configurations 
The parallel singular configurations of the H4 are identified by investigating matrix SJ . The 
first four columns of SJ  define the four internal forces of parallelogram which are along the 
direction ii AB  (see Fig.53 and 55). Utilizing Grassmann geometry, we can obtain all 
singularities of SJ . 
Based on H4’s kinematic architecture, the first four columns of SJ  can form only the 
following linear varieties: 
• Type I: a line bundle where all lines intersect a common point, but they are not 

coplanar. This is the condition 3c described in section 4.1.2. 
• Type II: all the lines belong to the union of two planar pencils of non coplanar lines that 

have a line in common. This is the condition 3b described in section 4.1.2. 
Type I can be considered as the special condition of Type II. When the first four columns of 

SJ  are linear dependent, the actuators can’t control the linear velocity of the nacelle, 
generally known as “architecture singularity” (Joshi & Tsai, 2002). 
The last two columns of SJ  define the two moments of constraint which are along the 
direction CiS . We make here the assumption that the two revolute joints placed on the 
nacelle have the same direction represented by vector v . This choice may be not the only 
one, but it worth noting that placing two revolute joints parallel to each other on the nacelle 
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is a good choice for practical matters. The existence of a rotational motion about v  can be 
written as follows (Pierrot & Company, 1999): 

 0SS ≠× 21 CC  (57) 

When 0SS =× 21 CC , the vectors 1CS  and 2CS  are linearly dependent. The constraint 
moments exerted on the nacelle are along the same direction, and the robot would gain 
additional DOF(s). This singularity arises from deficiency of constraints, so we call this 
singularity as “constraint singularity”. 
In order to investigate the instantaneous motion the robot tends to perform while in singular 
configurations, the LCAA which was presented at (Pottmann et al., 1999) and further used 
for robotic analysis in (Wolf & Shoham, 2003) is adopted. The LCAA is based on 
determining the linear complex ( )ccC ,= , which is the closest one to the given set of lines 

( )iii llL ,= . The moment of iL  with respect to a linear complex C  is given by: 

 ( )
c

lclc
CL

ii
m

⋅+⋅
=,   (58) 

Hence, given a set of lines iL , the closest linear complex among all linear complexes χ  can 
be given by the minimization of: 

 ( )∑
=

k

i
im

1

, χL   (59) 

where χ  is given by ( ) 6, ℜ∈= xxχ . 
Equation (59) is equivalent to minimizing the positive semi-definite quadratic form given by 
(Pottmann et al., 1999): 

 ( )∑
=

=⋅+⋅=
k

i

T
iiF

1

2)( MχχlxlxX   (60) 

under the normalization condition Dχχx T== 21 , where ( )0,0,0,1,1,1diag=D , χ  presents the 

set of all linear complexes given by ( ) 6, ℜ∈= xxχ , and M  is the Gramian matrix of SJ . 

Equation (60) is a general eigenvalue problem and the solution, C , is the eigenvector iχ  
corresponding to the smallest eigenvalue. Moreover, given the closest linear complex found 
by the algorithm, the axis, A , of the linear complex and its pitch can also be revealed. In 
fact, the minimization procedure shown in above minimizes the work of the wrench applied 
on the moving platform and the twists. When the smallest eigenvalue is zero, there is no 
work generated by the set of wrenches when the platform moves in the twist direction given 
by χ . So we can use LCAA to investigate the behavior of H4 manipulator in singular 
configurations. 

4.4 Simulation and results 
In this section, the parallel singularities of an example H4 manipulator are presented and 
the LCAA method is used to investigate the instantaneous motion the manipulator tends to 
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perform while in these singular configurations. For simulation, the design parameters we 
have selected is described in Fig.11, where the parameters have been chosen as described in 
section 3.2.2. 
Architecture singularities 
Architecture singular configurations of the H4 manipulator are identified using line 
geometry (Merlet, 2006). Note the first four columns of SJ  as: 
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where 1=ia  and 0=⋅ ii aa , so the six coordinates with ( )ii aa ,  are called the normalized 

Plücker coordinates of iA  (i=1,2,3,4). Deriving from the geometric conditions (Type I and 
Type II) in section 4.3, we can find that when the coordinates of point D satisfy the following 
condition: 

 

5080.1
4130.9
5812.9

−=
−=
−=

θ
y
x

  (62) 

singularity occurs. The closest linear complex’s axis found by the algorithm is: 

[ ]03331.02937.5100 −−=A  

The standard deviation of the lines form C  is given by: 0
5
=

−
=

k
iλσ , and the linear 

complex’s pitch is given by: 4047.9
2

−=
⋅

=
c

ccp . Fig.18 demonstrated the result of the LCAA.  
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Fig.18. H4 robot with linear complexes (a): 3D view (b): top view 

Corresponding to the non-zero pitch value of the linear complex, at this singularity the 
robot performs a screw motion of rotation and translation around the linear complex axis 
A . 

(a) (b)
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Constraint singularities 
From the discussion in section 4.3, we know that when 0SS =× 21 CC , the robot is in a 
constraint singular configuration. If we select the structure parameters as Fig.11, when: 

 

3905.2
3709.3
6683.3

−=
=
−=

θ
y

x
  (63) 

the robot reaches singular configuration. 
Constraint singularity occurs in limited-DOF manipulator when the screw system, formed 
by the constraint wrenches in all chains, loses rank. In this section, the geometric 
explanation of constraint singularity is given, then LCAA is applied to investigate the 
behavior of H4 manipulator in constraint singular configuration. From the viewpoint in 
(Zlatanov et al., 2002), the system of the constraining wrenches of H4, W, contains as a 
subspace the 2-system of all pure moments. Then its reciprocal system, the freedoms system 
T, must contain 3 translations and 1 rotation. In a H4 manipulator, the two “meta-chain” 
constrain system Wp contains two pure moments, one’s direction is along 1CS , and the 
other’s direction is along 2CS . When the two moments of the two “meta-chain” are linearly 
independent, two pure moments will be in W. 
However, in the constraint singular configuration, 1CS  and 2CS  are parallel. The 
constraining moments of two “meta-chain” are identical and the system Wp are the same 
one-system. Then, W consists of only one screw. Hence, the twist system of the robot is a 
five-system and the mechanism gains new additional freedom. Applying the method of the 
closest linear complex on the H4 robot in its constraint singular configuration, we can find 
the closest linear complex’s axis is: [ ]0887.12064.03208.02024.03524.09137.0 −−=A  

and the linear complex’s pitch is: 0469.1
2
=

⋅
=

c
ccp . [ ]TCC 09330.03599.021 −=−= SS  means 

that this configuration is singular and the robot is able to execute a screw motion of rotation 
and translation around the linear complex axis. The direction of the linear complex axis is 
perpendicular to 1CS  (and 2CS ) because 01 =⋅ Ca S  (and 02 =⋅ Ca S ). This corroborates the 
results deduced from the viewpoint of constraint singularities. Fig.19 demonstrates the 
result of the LCAA in constraint singular configurations.  
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Fig.19. H4 robot with linear complexes (a): 3D view (b): top view 
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Discussion: Simulation Results of the H4 robot 
From above discussion, only one architecture singular configuration can be found. In this 
configuration, the intersection point of 21 , AA  and the intersection point of 43 , AA  (see 
equation (61)) are superposed, which satisfies the geometric condition of Type I (in section 
4.3). However, for constraint singularities, as long as 0SS =× 21 CC  is satisfied, the 
manipulator would reach singular configurations. Four parameters θ,,, zyx  are used to 
describe the configuration of a H4 manipulator. z  is independent of the singularities. The 
singular equation 0SS =× 21 CC  provides only one constraint equation, so the three 
parameters θ,, yx  constitute a three dimension curved surface. All the points in the curved 
surface satisfy the equation 0SS =× 21 CC . We call this surface as constraint singular surface. 
The equation of the constraint singular surface can be written as: 

 ( ) 021 =⋅× vSS CC   (64) 

Fig.20 depicts the constraint singular surface.  
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Fig.20. The constraint singular surface 
As we can see from the reference (Wolf & Shoham, 2003): 

( )∑
=

==⋅+⋅=
k

i
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iiF
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2)( λMχχlxlxX  

λ has the meaning of the sum of the square of the virtual work generated by the structure to 
the nacelle, when the latter is moving instantaneously in the twist direction given by χ . 
Hence, if 0=λ , the chains would lose the constraints on the nacelle and the nacelle could 
move instantaneously in the twist direction given by χ .  
The standard deviation of the lines iL  from C, may be written as: 
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which is the square of error from iL  to C . In case of a sufficiently small deviation σ , the 

given lines iL  can be well approximated by lines of the linear complex C , which means 
that the current configuration is close to the singular configuration. When 0=σ , the lines 

iL  lie on the linear complex C , which means that the manipulator is in a singular 
configuration and the nacelle can move in the twist direction of the linear complex axis. 
In order to investigate the robot’s behavior in the vicinity of the singular configuration, a 
simulation is performed in the neighborhood of the architecture singular configuration 
(Fig.21-Fig.22). 
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Fig.21. Minimum σ in the vicinity of the architecture singular configuration 
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Fig.22 Pitch of linear complex with minimum σ in the vicinity of the architecture singular 
configuration 
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All the simulations are in the adjacent range of the singular configuration: [ ]1.91.10 −−∈x , 
[ ]9.89.9 −−∈y , 0=z , 5080.1−=θ . 

It can be seen that the manipulator is no longer in a singular position. However, when 
manufacturing tolerances are greater than the value σ , there is still possibility of an 
uncontrolled motion of the nacelle according to the interpretation of  σ . 

5. Conclusions 
This chapter mainly discusses the architectures and some kinematic problems about the 4-
DOF parallel manipulator H4 which is suitable for pick and place operations. The geometric 
methods used to analyze the singularity poses are introduced in detail. As this type of 
parallel manipulator generally performs tasks implying significant accuracy, velocities and 
accelerations, there are still numerous topics need further study. 
It is the complexity of the parallel manipulator’s implantation, of their control and of their 
design that hinders their widely use. Control efficiency is related to kinematics calculation. 
Although the analytical formulation of the direct kinematics is deduced in section 3.2.1, 
solving the 16th degree univariate polynomial equation is not trivial and efficient control still 
requires very fast algorithms which give all of the solutions. 
The motions of H4 are mainly restricted by mechanical limits on passive joints, interference 
links and limitations due to the actuators. Because of the coupling between translations and 
rotations, it is generally complex to determine the workspace of H4. There are various 
methods can be used to calculate the workspace of H4, such as the discretization approach, 
inequality constraints approach (Jo, 1989) and algebraic approach (Husty, 1996). Merlet 
(Merlet, 2006) has pointed out that the geometrical approaches are very efficient for the 
determination of various types of workspace and algebraic geometry should also play an 
important role in some of the algorithms which are used to calculate the workspace of 
parallel manipulators. 
Singularity analysis of parallel manipulators is crucial for practical applications. Besides the 
geometric method suggested in section 4, some new ideas are provided to analyze 
singularities of parallel manipulators by using different mathematic tools. Differential 
geometric is a powerful tool for general analysis of parallel manipulators. From the 
geometric properties of the parallel manipulator, Liu et al. presented a framework for 
analyzing the singularities of a parallel manipulator (Liu et al., 2003). Topological structure 
of these singularities and their relations with the kinematic parameters of the system were 
investigated systematically using Morse function theory. An intrinsic definition of 
parameterization singularities was given in this chapter. Due to the profound explanation of 
the parallel manipulators’ characteristics, although the differential geometric tool is abstract, 
its use for general analysis and extension to geometric control of parallel manipulator is still 
worthy of study. In some situations, it is only necessary to seek singular configurations in 
the workspace of parallel manipulators. Su et al. (Su et al., 2003) proposed a new singularity 
analysis method for Steward platform using genetic algorithm (GA). The square of 
determinant of the Jacobian matrix is selected as the objective function, and the minimal of 
this objective function is searched in the workspace of Steward platform by the GA. The 
singularity of Steward platform depends on this minimal objective function: if this value is 
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zero, the singularity of Steward platform will take place, otherwise, the Sterward platform is 
singularity-free. This method can be used to determine the dimensioning of a H4 so that it is 
singularity-free, at least in a given workspace. Of course, the effectiveness and speediness of 
the GA are the chief problems which should be considered. 
The study of the novel parallel manipulator H4 and its various reformative structures has 
become increasingly important during recent years for its excellent performance of velocity 
and acceleration. But numerous problems still remain open, especially the positioning 
accuracy of the end-effector. From the paper written by Renaud et al. (Renaud et al., 2003), 
the positioning accuracy of a H4 can only reach lower than 0.5mm, which cannot meet the 
requirements (generally lower than 0.05mm) of the semiconductor end-package 
equipments. We hope that this chapter will arise some attention to extend this type of 
parallel manipulators to semiconductor industry. 
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1. Introduction 
When a human hand grasps an object the hand can be viewed as a parallel manipulator. In 
general, the mathematical analyses of the human hands and multi-fingered robot hands 
(Murray et al. 1994) are similar. In particular, concepts developed in robotics such as contact 
models, e.g. soft-finger model, grasp matrix, form and force closure grasps, internal forces, 
etc. can be applied to analyze the performance of the human hands. Multi-finger prehension 
is an example of a mechanically redundant task: the same resultant forces on the object can 
be exerted by different digit forces. People however do not use all the mechanically 
available options; when different people perform a certain manipulation task they use a 
limited subset of solutions.  
Studies on human prehension deal with four main issues:  
1. Description of the behavior: What are the regularities in force patterns applied at the 

fingertip-object interfaces when people manipulate objects?  
2. Are the observed patterns dictated by the task and hand mechanics? The mechanical 

properties of the hand and fingers are complex, and it is not always evident whether the 
findings are direct consequences of the mechanical properties of the hand or they are 
produced by a neural control process.  

3. If the observed facts/phenomena are not of mechanical origin are they mechanically 
necessitated? In other words, can the task be performed successfully in another way?  

4. If reproducible phenomena are not mechanical and not mechanically-necessitated, the 
question arises why the central nervous system (CNS) facilitates these particular 
phenomena. This is a central question of the problem of motor redundancy in general: 
Why does the CNS prefer a certain solution over other existing solutions? 

The present chapter briefly reviews some specific features of the human hand and the 
involved control mechanisms. To date, the experimental data are mainly obtained for the so-
called prismatic grasps in which the thumb opposes the fingers and the contact surfaces are 
parallel (Figure 1). The contact forces and moments are typically recorded with 6-
component force and moment sensors. 
Experimental ‘inverted-T’ handle/beam apparatus commonly used to study the prismatic 
precision grip. Five six-component force sensors (black rectangles) are used to register 
individual digit forces.  During testing, the suspended load could vary among the trials. The 
load displacement along the horizontal bar created torques from 0 N⋅m to 1.5 N⋅m in both 
directions. The torques are in the plane of the grasp. While forces in all three directions were 
recorded the forces in Z direction were very small and, if not mentioned otherwise, were 
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neglected. When the handle is oriented vertically the force components in the X and Y 
directions are the normal and shear, (or tangential) forces, respectively. The figure is not 
drawn to scale. 
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Figure 1. Experimental ‘inverted-T’ handle/beam apparatus  

2. Digit contacts 
During an object manipulation the finger tips deform and the contact areas are not constant 
(Nakazawa et al. 2000; Paré et al. 2002; Serina et al. 1997; Srinivasan, 1989; Srinivasan et al. 
1992; Pataky et al. 2005). The fingers can also roll on the sensor surface. As a result, the point 
of digit force application is not constant: it can displace by up to 5-6 mm for the fingers and 
up to 11-12 mm for the thumb (Figure 2). Therefore the digit tip contacts should be as a rule 
treated as the soft-finger contacts (Mason & Salisbury, 1985).  
When a soft-finger model of the digit-object contact is employed, the contact is characterized 
by six variables: three orthogonal force components (the normal force component is uni-
directional and the two tangential force components are bi-directional), free moment in the 
plane of contact, and two coordinates of the point of force application on the sensor. To 
obtain these data the six-component force and moment sensors are necessary.  The 
coordinates of the point of force application are not recorded directly; they are computed 
from the values of the normal force and the moment around an axis in the contact plane. 
Such a computation assumes that the fingers do not stick to the sensor surfaces, in other 
words the fingers can only push but not pull on the sensors. In such a case the moment of 
force about the sensor center is due to the application of the resultant force at a certain 
distance from the center. The displacements of the points of digit force application change 
the moment arms of the forces that the digits exert on the hand-held object and make the 
computations more cumbersome. 
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Figure 2.  Displacement of the point of application of digit forces in the vertical direction at 
the various torque levels. The results are for an individual subject (average of ten trials). The 
positive direction of the torque is counterclockwise (pronation efforts), the negative 
direction is clockwise (supination efforts). Adapted by permission from V.M. Zatsiorsky, F. 
Gao, and M.L. Latash. Finger force vectors in multi-finger prehension. Journal of 
Biomechanics, 2003a, 36:1745-1749. 

3. Hand asymmetry and hierarchical prehension control 
Asymmetry in the hand function is an important feature that differentiates the hand from 
many parallel manipulators used in engineering as well as from some robotic hands (Fu & 
Pollard 2006). The functional hand asymmetry is in part due to the hand design (e.g. the 
thumb opposing other fingers, differences in the capabilities of index and little fingers, etc.) 
and in part is due to the hand control. 
Due to the specific function of the thumb opposing other fingers in grasping, the forces of 
the four fingers can be reduced to a resultant force and a moment of force.  This is 
equivalent to replacing a set of fingers with a virtual finger, VF (Arbib et al. 1985, Iberall 1987; 
Baud-Bovy & Soechting, 2001). A VF generates the same wrench as a set of actual fingers.  
There are substantial differences between the forces exerted by individual fingers (IF) and 
VF forces: (a) The IF force directions are as a rule dissimilar (for a review see Zatsiorsky & 
Latash 2008) while their resultant (i.e., VF) force is in the desired direction (Gao et al. 2005). 
(b) VF and IF forces adjust differently to modifications in task conditions (Zatsiorsky et al. 
2002a, b).  (c) IF forces are much more variable than VF forces (Shim et al. 2005a, b). The 
desired performance at the VF level is achieved by a synergic co-variation among individual 
finger forces at the IF level. The above facts support a hypothesis that multi-finger 
prehension is controlled by a two-level hierarchical control scheme (reviewed in Arbib et al. 
1985; Mackenzie & Iberall 1994). At the upper level, the required mechanical action on the 
object is distributed between the thumb and the VF. At the lower level, action of the VF is 
distributed among individual fingers.  
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Functional hand asymmetry is also manifested in different responses to perturbations in the 
supination effort (SE) and pronation effort (PE) tasks. [The anatomical terms supination and 
pronation refer to the rotation of the forearm and hand along the longitudinal forearm axis 
in the clockwise and counterclockwise directions, respectively (as seen by the performer).] 
For instance, when subjects double their initial grasping force whilst maintaining the handle 
in the air in equilibrium, in the PE tasks the moment of normal forces exerted on the object 
increases while in the SE tasks it decreases (Figure 3).  Such moment changes are not 
determined by the hand anatomy which is approximately symmetrical about the 
longitudinal axis of the hand (Li et al. 1998a). The changes in the moments of the normal 
forces are compensated by equal and opposite moments of the tangential forces such that 
the total moment exerted on the object does not change.   
 

 
 

Figure 3. Changes of the moments of the normal forces after the doubling of the grasping 
force (From an unpublished study by X. Niu, M.L. Latash, V. Zatsiorsky, 2008) 

Another example of the functional hand asymmetry in the SE and PE tasks comes from the 
experiments with transcranial magnetic stimulation (TMS). A single-pulse TMS applied over 
the hand projection in the left motor cortex (its descending pathways go to the segmental 
apparatus that controls the right hand) induced different reactions in the SE and PE tasks 
(Figure 4). Note that the changes in the total moment of force scale with the background 
moment of force (task moment of force in Figure 4), but supination responses dominate. 
The reasons behind the asymmetrical hand reactions to the TMS-induced perturbations in 
the SE and PE tasks are presently unknown. 
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Figure 4. The dependence of the TMS-induced change in the total moment of force on the 
background moment of force required by the task. The grand average across subjects data 
(n=6) are presented with the linear regression line. (From an unpublished study by X. Niu, 
M.L. Latash, V. Zatsiorsky, 2008) 

4. Finger interdependence and inter-finger connection matrices 
In studies on parallel manipulators, the contacts are usually considered independent and 
identical in their properties. Consequently, all contact points are treated equally. Actions of 
human fingers are not independent (reviewed in Schieber, Santello, 2004; Zatsiorsky, Latash 
2004; 2008). To demonstrate the finger interdependence turn your palm up and wiggle the 
ring finger. You will see that other fingers also move. This simple demonstration is an 
example of the so called finger enslaving—fingers that are not required to produce any 
force/motion by instruction are activated (Kilbreath & Gandevia 1994; Li et al. 1998b; 
Zatsiorsky et al. 2000; Kilbreath et al. 2002). Another type of the finger interdependence is 
force deficit— peak force generated by a finger in a multi-finger maximal voluntary 
contraction (MVC) task is smaller than its peak force in the single-finger MVC task. The 
deficit increases with the number of explicitly involved (master) fingers (Li et al. 1998a). 
Finger interdependence is commonly described by inter-finger connection matrices (IFM) that 
relate the levels of commands to individual fingers with finger forces via a matrix equation 
(Zatsiorsky et al. 1998b; Li et al. 2002; Danion et al. 2003; Gao et al. 2003; Latash et al. 2003a): 

 f = [W]c  (1) 

where f is a (4×1) vector of the normal finger forces, [W] is a (4×4) inter-finger connection 
matrix whose elements depend on the number of fingers involved in the task (i.e. they 
represent both the finger enslaving and force deficit), and c is a (4×1) vector of central 
(neural) commands, representing by how much the person wants to involve individual 
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fingers. The elements of vector c equal 1.0 if the finger is intended to produce maximal force 
(maximal voluntary activation), they are equal to zero if the finger is not intended to 
produce force (no voluntary activation). The inter-finger connection matrices can be 
computed by artificial neural networks based on experimental data involving finger force 
measurements (Zatsiorsky et al. 1998; Li et al. 2002; Gao et al. 2003, 2004; Latash et al. 2003a) 
or estimated by simple algebraic equations (Danion et al, 2003). The described approach led 
to the concept of finger modes that are arrays of finger forces caused by a single command to 
one of the fingers. If matrix [W] is known and actual finger forces in a prehension task are 
recorded, the vector of neural commands c can be reconstructed by inverting equation (1): c 
= [W]−1f (Zatsiorsky et al. 2002b). Matrix [W] is 4×4 and is always invertible. 
When the vector c is reconstructed, forces generated by individual fingers can be 
decomposed into components that are due to (a) direct commands to the targeted fingers, 
and (b) the enslaving effects, i.e. the commands sent to other fingers (Figure 5). 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1.500 -1.125 -0.750 -0.375 0.000 0.375 0.750 1.125 1.500

Torque (Nm)

Fo
rc

e 
(N

)

Enslaved force, N
Index finger effect
Ring finger effect
Little finger effect
Combined enslaving effect

 
Figure 5.  Decomposition of the normal force of the middle finger during holding a 2.0 kg 
load at different external torques. The data are from a representative subject.  (Adapted from 
V.M. Zatsiorsky, R.W. Gregory, and M.L. Latash. (2002b) Force and torque production in 
static multifinger prehension. II. Control. Biological Cybernetics, 87: 40-49.) 

5. Agonist and antagonist fingers 
In multi-finger grasps, the finger forces generate the moments of force with respect to the 
thumb as a pivot. The fingers that are located above and below the thumb, for instance the 
index and the little fingers, generate moments in opposite directions (Li et al. 1998a, b). 
Moments in a desired direction —those that resist the external torque—have been termed 
the agonist moments while moments in the opposite direction—assisting the external 
torque— have been termed antagonist moments (Zatsiorsky et al. 2002a, b).The fingers that 
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generate agonist and antagonist moments with respect to a given task (external torque) are 
commonly addressed as the agonist and antagonist fingers, respectively.  
Activation of the antagonist fingers increases the energy expenditure and can be 
mechanically unnecessary. Patterns of the antagonist moments depend on the load/torque 
combinations and can be described using a 3-zone model, Zatsiorsky et al. 2002a): (A) Large 
load-small torque combinations. The antagonist fingers should be activated to prevent object 
slipping from the hand. In such tasks the antagonist moments are mechanically necessary. 
(B) Intermediate load-intermediate torque combinations.  To prevent slipping, a performer has 
two options: (a) exert larger force by the agonist ‘central’ (middle or ring) finger while 
simultaneously decreasing the force of the agonist ‘peripheral’ (index or little) finger such 
that the VF normal force is above the slipping threshold, or (b) activate the antagonist 
fingers.  (C) Small load-large torque combination.  In such tasks, there is no need for the 
performer to be concerned about the object slipping from the hand because the force exerted 
by the agonist fingers is sufficient for the slip prevention. In this zone, antagonist moments 
are not mechanically necessary. They were however observed in all the tasks (Figure 6). One 
of the mechanisms causing the antagonist moments is enslaving; antagonist fingers are 
activated because strong commands are sent to the agonist fingers and the antagonist 
fingers are enslaved by these commands. 
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Figure 6. ‘Antagonist/agonist moment’ ratio in different tasks. Among the tasks, the load 
varied from 0.5 to 2.0 kg and the torque values were from –1.5 Nm to 1.5 Nm. The ratio for 
the zero torque conditions was estimated from the equilibrium requirements under the 
assumption that the normal forces of the two pairs of agonist and antagonist fingers were 
equal. Antagonist moments were observed over the entire range of load-torque 
combinations.  (Adapted from V.M. Zatsiorsky, R.W.Gregory, and M.L.Latash. Force and 
torque production in static multifinger prehension: biomechanics and control. I. 
Biomechanics. Biological Cybernetics, 2002, 87:50-57.) 
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6. Grasp equation 
The force-moment transformations from the digit tips to the hand-held object can be 
described with a grasp equation 

 F=Gf  (2) 

For a planar task (see Figure 1), F is a (3×1) vector of the resultant force and moment acting 
on the object, G is a (3×10) grasp matrix (Mason & Salisbury 1985), and f is a (10×1) vector of 
the digit forces. The elements of the first two rows of the matrix are the coefficients at the 
digit force values. Because in the position shown in Figure 1 the normal and tangential digit 
forces are along the X and Y axes of the global system of coordinates, the coefficients are 
either zeroes or ±1. When the normal and tangential digit forces are not parallel to the X and 
Y axes, e.g. when the handle is not oriented vertically, the coefficients equal the direction 
cosines, i.e. the projections of the unit vectors along the normal and tangential directions 
onto the X and Y axes. The elements of the last row in matrix G are the moment arms of the 
digit forces about axis Z through the origin of the system of coordinates. G is also known as 
the matrix of moment arms. 
Equation (2) is a linear equation that allows for using the common methods of linear 
algebra. The equation is based however on a simplifying assumption that the elements of 
the grasp matrix are constant, i.e. the points of digit force applications do not displace 
during the period of observation. If they migrate, the elements of G are not constant 
anymore and the equations become non-linear: variable values of digit forces are multiplied 
by the variable values of moment arms. In computations, this obstacle can be avoided if a 
(10×1) f vector is expanded to a (15×1) vector where the added elements are the moments 
exerted by the individual digits with respect to the corresponding sensor centers.  Matrix G 
in this case is 3×15.  For a general 3-D case, matrix G is 6×30.  

7. Internal forces during object manipulation 
In multi-digit grasping, a vector of contact forces and moments f can be broken into two 
orthogonal vectors: the resultant force vector fr (manipulation force) and the vector of the 
internal force fi (f= fr + fi) (Kerr & Roth 1986; Yoshikawa & Nagai 1990, 1991). An internal 
force is a set of contact forces which can be applied to an object without disturbing its 
equilibrium (Mason & Salisbury 1985; Murray et al. 1994). The elements of an internal force 
vector cancel each other and, hence, do not contribute to the manipulation force (a resultant 
wrench exerted on the object). In human movement studies, the best known example of the 
internal forces is the grasp force, two equal and opposite normal forces exerted by the thumb 
and VF against each other. The resultant of these forces equals zero. An internal force is not 
a single force; it is a set of forces and moments that, when act together, generate a zero 
resultant force and a zero resultant moment.  
In five-digit grasps in 3-D space, vector of individual digit forces and moments f is a 30×1 
vector.  Its relation with a 6×1 vector F of the resultant forces and moments acting on the 
object is described by equation (2) where G is a 6×30 grasp matrix (Salisbury &  Craig 1982; 
Kerr & Roth 1986). Vector of the internal forces fi lies in the null space of G (the null space of 

a m by n matrix G is the set of all vectors f in Rn such that Gf = 0 }{ 0GfN(G)f =∈ ). 

Because the rank of a 6×30 matrix is at most 6, the dimensionality of the null space of the 
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grasp matrix (its nullity) is at least 24. The dimensionality of each of these vectors equals the 
total number of the digit forces and moments, i.e. thirty in five-digit grasps (some of the 
elements of an internal force vector can be zero). Hence there exist many finger force-
moment combinations that interact in such a manner that the individual forces and 
moments cancel each other and do not contribute to the manipulation force. For instance, if 
individual tangential finger forces are in opposite directions, ulnar and radial, these force 
components can cancel each other such that the resultant tangential force equals zero. 
Analysis of all the 24 basic vectors of N(G) would be a daunting task. The force elements can 
be of different magnitude (provided that they negate each other’s effects) and the 24 
independent sets of internal forces (basic vectors) can be combined in different linear 
combinations, so there can be many internal forces (Gao et al. 2005). A performer can choose 
innumerable combinations of the internal force elements provided that they cancel each 
other.   
So far, the research was mostly limited to the planar tasks performed with mechanically 
unconstrained objects and analyzed at the VF level. According to the mathematical analyses 
(Kerr & Roth 1986; Gao et al. 2005), at this level there exist only three internal forces: the 
grasp force, the internal moment (about an axis parallel to axis Z, see Figure 1), and the twisting 
moment - due to the opposite twisting moments exerted by the thumb and VF around the 
axis normal to the surfaces of the contacts  The latter combination is mechanically possible 
due to the soft finger contacts but cannot be actually realized in single-hand grasping: 
people cannot twist the thumb and the finger(s) in opposite directions (in two-hand 
grasping this option can be realized). Because of that, the twisting moment is neglected in 
the studies on human prehension. 
The manipulation force is prescribed by the task mechanics. The internal forces allow for 
much freedom. The manipulation force vector and the vector of the internal force are 
mathematically independent (Kerr & Roth 1986; Yoshikawa & Nagai 1991). Practically this 
means that the central controller can change manipulation force without changing the 
internal force and vice versa (Yoshikawa & Nagai 1990, 1991; Gao et al. 2005 b, c).  This 
opportunity is realized in robotics manipulators where the manipulation force and the 
internal forces are commonly controlled separately (e.g., Zuo & Qian 2000); the control is 
said to be decoupled. The decoupled control requires less computational resources; the 
controller does not have to bother about on-line adjustments of the grasp force to object 
acceleration and/or orientation. This strategy requires, however, exerting unnecessarily 
large forces and is, in this sense, uneconomical.  People do not use this option. Available 
data suggest that the CNS prefers to face larger computational costs rather than produce 
excessive forces.  In contrast to robots, people adjust the internal forces to the manipulation 
forces during the object transport (Flanagan & Wing 1993, 1995; Smith & Soechting 2005; 
Zatsiorsky et al. 2005; Gao et al. 2005 b, c). The pattern of the adjustment depends on the 
performed movement.  
Gao et al (2005 b, c) studied vertical and horizontal object movement at the three handle 
orientations, vertical, horizontal and diagonal (inclined 45o). In total, six combinations of 
handle orientation and movement direction were tested: (1) Parallel manipulations. (1a). VV 
task: Vertical orientation-vertical movement. (1b). HH task: Horizontal orientation-
horizontal movement. (2) Orthogonal manipulations. (2a) VH task: Vertical orientation-
horizontal movement. (2b) HV task: Horizontal orientation-vertical movement (3) Diagonal 
manipulations. (3a.) DV task: Diagonal orientation-vertical movement. (3b). DH task: 
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Diagonal orientation-horizontal movement. In the above description the following 
terminology is used: When the handle orientation and the direction of manipulation are 
along the same axis (e. g. a vertically oriented handle is being moved in the vertical direction 
or a horizontally oriented handle in the horizontal direction) the manipulation is called the 
parallel manipulation. The orthogonal manipulation corresponds to the object motion at the 
right angle to the handle orientation, e.g. a vertically oriented handle is being moved in a 
horizontal plane or a horizontally oriented handle is moved in a vertical plane. 
The summary results on the coordination of internal forces in various manipulation tasks 
are presented in Table 1. The following terminology is used. Grasping synergy (GS) is a 
conjoint change of the normal digit forces (Zatsiorsky & Latash 2004). The coordination 
pattern characterized by a simultaneous (in-phase) increase or decrease of the normal forces 
of the thumb and VF is called symmetric GS (in the VV task a symmetric GS was used, see 
Figure 7 below). The reciprocal thumb force-VF force changes when the normal forces of the 
thumb and VF change in opposite directions are called anti-symmetric GS, see Figure 8 where 
the internal force demonstrated an ‘inverted V’ pattern with respect to the handle 
acceleration. 
 

 
Manipulation 

Coupling of the thumb 
and VF normal forces
(Grasping synergies) 

Internal force-manipulation 
force (acceleration) couplung 

VV Symmetric Positive 
 

Parallel HH Symmetric 
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Orthogonal 

HV 

Depends on the 
frequency. 
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frequencies. 
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high frequencies an 

asymmetric inverted-V 
pattern with the peak at 1 g 

DV Symmetric Positive 

Diagonal 
DH Anti-symmetric 

Positive (for the selected 
direction of the coordinate 

axes) 

Table 1. Internal forces during different manipulations of the hand-held objects  

Consider the cases of symmetric GS and anti-symmetric GS. When people move a vertically 
oriented object in the vertical direction (the VV tasks) the grip force FG increases in parallel 
with the object acceleration and hence the load force  FL  (FL= W+ma where W is the object’s 
weight, m is its mass and a is acceleration), apparently to prevent slip  (Johansson & 
Westling 1984; Flanagan & Wing 1993, 1995; Flanagan et al. 1993; Flanagan & Tresilian 1994; 
Nakazawa et al. 1996; Kinoshita  et al. 1996, Gordon et al. 1999; Gysin et al. 2003; see also 
Flanagan & Johansson 2002 for a review). The FG - FL coupling is so strong that people 
increase FG in parallel with FL even when FG is already much above the slipping threshold, 
e.g. when before lifting the object a performer purposefully grasps the object with a high 
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force (Flanagan & Wing 1995). Figure 7 illustrates the finding. Note that the grasping force is 
larger for larger object acceleration. 
 

 
Figure 7. VV manipulation. (A) Normal forces of the thumb and VF (N) versus the handle 
acceleration in the vertical direction. A representative trial, weight (W) 8.8 N, frequency 1.5 
Hz, representative subject. With the acceleration from approximately –0.5 g to 0.5 g the 
tangential force L (load) varied from approximately 4.4 to 13.2 N (L= W+ma). The range of 
the internal force fluctuations was approximately 4.0 N, from 4.0 to 8.0 N. (B) The VF normal 
force - acceleration phase angles (circular histogram). The phase angles cluster around zero 
degree.  (C) The VF normal force – thumb normal force phase angles (circular histogram). 
Thick black arrow represents the mean phase angles and the gray triangle represents the 
angular standard deviation, The dashed lines illustrate the data for individual bins, the bin 
size is 20°. n = 90 (6 subjects ×5 loads ×3 frequencies). Adapted from Gao, F., Latash, M. L., 
Zatsiorsky, V. M. (2005) Internal forces during object manipulation. Experimental Brain 
Research, 165 (1): 69-83. 
Quite a different coordination is observed in the VH tasks (horizontal movement of a 
vertically oriented object). In these tasks, the maximal grasping force is observed at the 
instances of maximal speed, and hence zero acceleration (Smith & Soechting 2005; Gao et al. 
2005a, b), Figure 8. 
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Figure 8. VH manipulation.  (A) Normal forces of the thumb and VF versus the handle 
acceleration in the horizontal direction. A representative trial, the load was 11.3 N, the 
frequency was 3 Hz, representative subject #1. (B) Internal force and average normal force 
versus the handle acceleration. The range of the internal force fluctuations was 
approximately 8.0 N, from 12.0 N to 21.0 N. (C) The thumb normal force-VF normal force 
phase angle [circular histogram, n = 150 (6 subjects ×5 loads ×5 frequencies)]. Adapted from 
Gao F, Latash ML, Zatsiorsky VM (2005) Internal forces during object manipulation. 
Experimental Brain Research, 165 (1): 69-83. 
In addition to the grasping force changes, the moments exerted by the normal and 
tangential digit forces also change during object manipulation while compensating for each 
other’s changes and preserving the object orientation (Figure 9). 

 
a)     b) 

Figure 9. Internal and resultant moments in various tasks. Representative examples. 
Abbreviations: NFM-Moment of normal force; TFM-Moment of tangential force; Sum = 
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(NFM+TFM) = resultant moment.  (A) VV: 2 Hz, 13.8 N, representative subject; (B) HH: 1 
Hz, 6.3 N, representative subject. Adapted from Gao, F., Latash, M. L., Zatsiorsky, V. M. 
(2005) Internal forces during object manipulation. Experimental Brain Research, 165 (1): 69-
83. 

8. Local and synergic reactions to perturbations 
When grasping different objects performers adjust digit forces to the object features. Two 
types of the adjustments are distinguished, local and synergic. The term local describes the 
responses that start and end at the same digit, i.e. an effect of friction at a given digit on the 
force exerted by this digit. The term synergic refers to changes in a finger’s force in response 
to changes in friction under other finger(s) (Aoki et al. 2006, 2007; Zatsiorsky et al. 2006).  
An example of the local and synergic reactions could be seen in experiments in which the 
friction under each digit was different, either high or low, resulting in eight friction 
conditions (for the three-digit grasps, Niu et al. 2007) or 32 friction conditions (Aoki et al. 
2007). The difference between the high and low friction was three-fold. When friction under 
a digit was low, its tangential force decreased and the normal force increased (local effects). 
Digit forces were also adjusted to friction at other digits (synergic effects). The synergic 
effects were directed to maintain the handle equilibrium. For instance, to keep the total 
tangential force constant, the tangential forces of the thumb and fingers changed in opposite 
directions (Figure 10). 
Not only the VF tangential force but also the tangential forces of the individual fingers are 
affected by the local friction conditions (Aoki et al. 2007; Niu et al. 2007). The tangential 
force adjustments to the local friction support the notion that the VF tangential force sharing 
is under neural control; the sharing percentage is not determined solely by the passive 
mechanical properties of the individual fingers and joints. In other words, the metacarpal 
joints cannot be modeled as simple hinges. 
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Figure 10. Tangential forces of the thumb and VF in the three-digit grasps as a function of 
the load and friction, high (H) or low (L). The eight friction conditions were HHH, HLL, 
HHL, HLH, LLL LHH, LHL, and LLH, where the letters correspond to the friction condition 
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for the thumb, index and middle fingers, respectively. The friction sets with the thumb at a 
low friction contact (LLL, LHH, LHL and LLH) are printed with dotted lines. The solid lines 
represent the tasks with the high friction contact at the thumb. In the left panel, LFE is the 
local friction effect, i.e. the difference induced by the high or low friction contact at the thumb. 
Two other smaller figure brackets show the synergic effects, i.e. the effect of friction at other 
digits on the thumb force.  The numbers in the bottom right insets are the regression 

coefficients and intercepts (the regression model .)1( Lkaf ii
t
i +=  was used for 

computations). Note the small values of the intercepts.  Cf. the right and the left panels: the 
thumb friction, H or L, induced opposite changes of the thumb and VF forces. (The figure is 
from X. Niu, M. Latash, V.M. Zatsiorsky (2007) Prehension synergies in minimally 
redundant grasps & the triple-product model of digit force control, Experimental Brain 
Research, 98 (1): 16-28.) 
Local and synergic reactions are not limited to adjustments to local friction. For instance, 
similar reactions were observed when performers were holding a motorized handle while 
the handle width was forcibly either increased or decreased (Zatsiorsky et al. 2006).  Handle 
expansion/contraction did not perturb the handle equilibrium; both the resultant force and 
moment acting on the handle remained the same. However, when the handle width 
increased each digit was perturbed (the length of the flexor muscle increased), and a 
restoring force tending to return the digit to its previous position arose (the local digit force 
adjustment).  The local mechanisms, e.g. stretch reflexes, were directed to resist the imposed 
digit displacement. These mechanisms violated the object equilibrium, whilst the synergic 
force adjustments restored the equilibrium. 

9. Principle of superposition in human prehension 
The principle of superposition refers to decomposition of complex skilled actions into several 
elemental actions, which can be controlled independently by several controllers. The 
principle was first suggested in robotics (Arimoto et al. 2001; Arimoto & Nguyen 2001) and 
was verified for the dexterous manipulation of an object by two soft-tip robot fingers. Such a 
control can be realized via a linear superposition of two commands, one command for the 
stable grasping and the second one for regulating the orientation of the object.  In robotics, 
such a decoupled control decreases the computation time.  
When applied to multi-finger grasps in humans, the principle claims that at the VF level the 
forces and moments during prehension are defined by two independent commands: “Grasp 
the object stronger/weaker to prevent slipping” and “Maintain the rotational equilibrium of 
the object”. The commands correspond to the two internal forces discussed previously, the 
grip force and the internal moment. The effects of the two commands are summed up. The 
validity of the principle was confirmed in a set of diverse experiments (for the review see 
Zatsiorsky et al. 2004; see also Shim et al. 2005 and Shim & Park, 2007)). The principle allows 
explaining the digit force adjustments to different factors such as  (a) the load force and its 
modulation associated with the handle acceleration; (b) the external torque and its 
modulation; (c) the object orientation in the gravity field; (c) friction at the digit tips; and 
some other variables. The variations of the above factors may require similar or opposite 
adjustments. For instance, an increase of the object weight and a decrease in friction both 
require a larger gripping force while, a decrease of the load and a decrease in friction require 
opposite grasp force changes, a force decrease and increase, respectively.  It has been 
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suggested that the CNS responds to a mixture of similar or opposite requirements follows a 
rule: Adjustment to the sum equals the sum of the adjustments (reviewed in Zatsiorsky& Latash 
2008).  
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This chapter focuses on the mobility analysis of spatial parallel manipulators. It first 
develops an analytical methodology to investigate the instantaneous degree of freedom 
(DOF) of the end-effector of a parallel manipulator. And then, the instantaneous 
controllability of the end-effector is discussed from the viewpoint of the possible actuation 
schemes which will be especially useful for the designers of the parallel manipulators. Via 
comparing the differences and essential mobility of a set of underactuated, over actuated 
and equally actuated manipulators, this chapter demonstrates that the underactuated, over 
actuated and equally actuated manipulators are all substantially fully actuated mechanisms. 
This work is significantly important for a designer to contrive his or her manipulators with 
underactuated or over actuated structures. 

Based on the analytical model of the DOF of a spatia ! " 0#!" #$$   (16) 

where $  and !$  are column vectors, $
%

&
'
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33
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# , and 3I  and 3!  are 33*  identity and 

zero matrices, respectively.  
Similarly, if one gets a set of terminal constraints exerted to a rigid body, its free motion(s) 
can also be solved through equation (16). Next, one can investigate the instantaneous 
mobility of the end-effector of a parallel manipulator with equation (16). 

!5"5#9:1#71;011#%+#+0117%<#%+#):1#127=1++18)%0#%+#.#-.0.((1(#<.2'-3(.)%0#
The free motions of the end-effector can be instantaneously expressed in a set of PlPcker 
homogeneous coordinates in one Cartesian coordinate system. The main steps are: 
!"#$%&'()*+,)'#)-'#.'/0*%,1#23%()/,*%)(#34#)-'#5*%'0,)*6#2-,*%(#
In general, any parallel manipulator can be decomposed into ! "1+$$  kinematic chains 
connecting the end effector with the base. In order to instantaneously analyze the mobility 
properties of the end-effector, this section only establishes one absolute coordinate system. 
After establishing the coordinate system, the Pl$cker homogeneous coordinates of all 
kinematic pairs in a chain can be obtained. Group all of the kinematic screws of the same 

chain to be ! "$%% ,,,$ !21#  and solve the terminal constraint(s) r$%  with equation (16). 
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In fact, if all of the terminal constraints of the kinematic chains are gained, the constraints 

exerted to the end-effector, denoted by '
#$ , should also be obtained. The dimension of 

constraint spaces spanned by the terminal constraints of kinematic chains can be simplified 

as ,
-
./

0
1#

'
#R'$() $ . 

7"#831&'#)-'#9/''#:3)*3%;(<=# (
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Naturally, the mobility properties of the end-effector is fully expressed by (
#$ . Its number of 

DOF can be expressed as: 
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Now, the DOF of the end-effector of the parallel manipulator shown in Fig. 1 can be 
instantaneously investigated with the above two steps. In this manipulator, the end-effector 

321 +++  has three identical PPRR kinematic chains connected with the fixed base. For the 
sake of modelling, one can establish any Cartesian coordinate system for the manipulator. 
Assume that the direction vector of the prismatic joint ! "1,2,3%, % #  is denoted by 

! ""%%%, -.'/
% 111# , the direction vector of the prismatic joint ! "1, 2,3%0 % #  is denoted by 

! ""%%%0 -.'/
% 222# , the rotational vector of the revolute joint %0  is denoted by 

! ""%%%%%%%%%%%%0,0 .'.'-'-'-.-.///
%%

!
% 122121121221 222#*# , the rotational vector of the revolute joint 

! "1, 2,3%+ % #  is denoted by !
%

!
% 0+
// # . Also suppose that 

321 ,,, /// 33  and 

0#4
%% ,0 // .E 

 

 
Fig. 1 a 3-PPRR Spatial Mechanism 

So, the kinematic screws for each kinematic chain can be expressed as: 
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The terminal constraints of the kinematic chain can be solved with (16): 

 $%
&

'(
)# 321 !

%
!
%

!
%

!
+0, %%%

$$$$   (19) 

where  ! ""%%%
!
% -.' 1110001 #$ , ! ""%%%

!
% -.' 2220002 #$ ,  

! "
! "

! "
! "

! "
! "

"

%%%%+

%%%%+

%%%%+

%%%%+

%%%%+

%%%%+
%%%%%%%%%%%%

!
% -.-.1

-'-'2

.'.'2

-.-.3

-'-'3

.'.'1
.'.'-'-'-.-.

%

%

%

%

%

%

,
,

-

.

/
/

0

1

22

2

22

2

22

2
222#

1221

2112

1221

1221

2112

1221
122121121221

3$ . 

According to the mechanism shown in Fig. 1, 
321 000 /// ## . Therefore, the terminal 

constraints exerted to the end-effector by these three kinematic chains are: 

 $%
&

'(
)# 3332111

321 3211321
!!!!!!!!

+++ $$$$$$$$   (20) 

It is not difficult to find that the rank of !
+++ 321

$  expressed by equation (20) is 5, and the free 

motions of the end-effector 321 +++  can be again solved with equation (16): 
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Equation (21) indicates that the end-effector has one translational DOF along the direction 
vector ! ""-.'/ 111111# . Of course, the number of the DOF of the end-effector is 

1
321
#,

-
./

0
1 4

+++R'$( $ , the direction is  ! "12 22 32

"/ ' . -#  and the type is translation, which is 

fully represented by the screw expression (21). 

!5!5#9:1#23<&10#%+#.8)3.)'%24#01>3'017#)%#8%2)0%(#):1#127=1++18)%0#%+#.#4-.)'.(#-.0.((1(#
<.2'-3(.)%0#
After obtaining the instantaneous mobility of the end-effector, one can directly exert *  
actuations to the manipulator, and then investigate the CDOF of the end-effector by solving 
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the free motion(s) of the end-effector within its workspace. If the newly solved motion(s), 

denoted by !,,,$ 21ni(
#%# , satisfy that ! ""# 000000ni(

3$ , then, additional actuations 
are needed under this configuration and the actuation scheme. Of course, we can either 

reselect the actuation scheme or add ,
-
.

/
0
1 ni(
#R'$( $  more actuation(s) under this configuration 

until ! ""# 000000ni(
#$ . The total number of actuations under the configuration 

with this actuation scheme is the CDOF. However, what must be pointed out is that the 
actuation(s) should not be exerted to the joint when the newly increased terminal constraint 
can be transformed by the other actuation(s). Otherwise, the over constraint case will occur. 
When there are a lot of possible actuation schemes any one of which can be selected to set 
the actuators, the controllability of the manipulator is also affected by the actuation scheme’s 
selection. For an instance, one can analyze the number of actuation(s) required to control the 
end-effector of the parallel manipulator shown in Fig. 1. Because the number of DOF of the 
end-effector is 1, it is reasonable for us to expect that the end-effector can be fully controlled 
only with one actuation. If one actuation is exerted to any joint of the mechanism, 1,  for 
example, it is not difficult to find that the end-effector still remains one translational DOF in 
the direction ! "12 22 32

"/ ' . -#  when one repeats the above two steps in section 2.1. 

Therefore, one has to add another actuation to the mechanism. Of course, he can add the 
second actuation to any one of the rest joints. However, it is not difficult to prove that the 
end-effector will not be controlled unless the second actuation is exerted to the prismatic 
joint ! "321 ,,#%0%  under the condition that the first actuation is exerted to ! "321 ,,#%,% . 
However, just as mentioned above, the new-added actuation should not be accepted if the 
newly-increased terminal constraint can be obtained by translating the former actuation(s). 
For an example, if the second actuation is assigned to the revolute joint 10 , the newly-
increased terminal constraints of the kinematic chain 111 +0,  will be: 

 ! ""++++++
!

'1.2-2'3.3-1-.'$
1111111111111111111 111111

222#$   (22) 

Equation (22) is the transformation of the actuation exerted to the prismatic joint 1, . So, the 
newly-added actuation is an over actuation for the actuation scheme whose first actuation is 
assigned to 1, . 
Of course, one can also exert the second actuation to the prismatic joint 2,  after assigning 
the first actuation to the prismatic joint 1, . Again, one can find that the end-effector still has 

the free translation in the direction ! "12 22 32

"/ ' . -#  when one repeats the above two 

steps in section 2.1. So, one can continue to add the third actuation to the prismatic joint 3, . 
However, the end-effector will not be controlled until a fourth actuation is applied to one of 
the prismatic joints, 10 , 20  and 30 . This forms a second actuation scheme. So, under this 
actuation scheme, the number of actuations needed to control the end-effector shown in Fig. 
1 is 4. 
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The differences between the second actuation scheme and the first one are that the second 
one not only completely control the end-effector but also completely control every link in 
the manipulator. The selections of different actuation schemes can be well accomplished by 
a computer especially when the possible selections are numerous such as the one shown in 
Fig. 1. Unfortunately, this properties of a mechanism is ignored by the general mobility 
formulas. 

?5# 9:1# 43&4).2)'.(# <%&'(')*# %+# 32710.8)3.)17@# %A10# .8)3.)17# .27# 1>3.((*#
.8)3.)17#<.2'-3(.)%04#
A manipulator is said to be underactuated when the number of actuators in the manipulator 
is smaller than the number of degrees of freedom of the mechanism (Lalibertd & Gosselin, 
1998). When applied to mechanical fingers, the concept of underactuation leads to shape 
adaptation, i.e. underactuated fingers will envelope the objects to be grasped and adapt to 
their shape although each of the fingers is controlled by a reduced number of actuators 
(Lalibertd & Gosselin, 1998). The concept of underactuation in robotic fingersfwith fewer 
actuators than the degrees of freedomfallows the hand to adjust itself to an irregularly 
shaped object without complex control strategy and sensors (Birglen & Gosselin, 2006a). 
These underactuated manipulators arise in a number of important applications such as 
space robots, hyper redundant manipulators, manipulators with structural flexibility, etc 
(Jain & Rodriguez, 1993). The fact that the underactuated robotic fingers allow the hand to 
adjust itself to an irregularly shaped object makes it possible that no complex control 
strategy or numerous sensors are necessary in these manipulators (Birglen & Gosselin, 
2006b). However, the over actuated mechanical systems often occur in biomechanical 
systems during the contact with ground and is recently introduced in redundantly actuated 
parallel robots. Yi and Kim (Yi & Kim, 2002) designed a singularity free load-distribution 
scheme for a redundantly actuated three-wheeled Omnidirectional mobile robot. The most 
outstanding advantage of the redundantly actuated mobile robot is that the singularities of 
the mechanism can be well avoided. Yiu and Li (Yiu & Li, 2003) investigated the trajectory 
generation for an over actuated parallel manipulator, in which there is one redundant 
actuator. Of course, the redundant actuator(s) and the required actuator(s) must obey a 
certain relationship determined by the mechanism, which will be discussed in section 3.2. 
This section aims at clarifying the substantial relationships between the underactuated, over 
actuated and the equally actuated manipulators. The underactuated manipulator, which is 
also called under-determinate input system, means that the number of actuations provided 
is less than that is necessary; while the over actuated manipulator, which is also called 
redundant actuation or redundant input system, means that the number of actuations 
provided is larger than that is necessary. Equally actuated manipulator, which is also called 
fully actuated or determinate system, means that the actuations provided is equal to that is 
needed. 
From the viewpoint of mechanisms, this classification of manipulators seems to be 
reasonable and has been widely used in engineering. However, it is not a properly scientific 
categorization for mechanisms. Therefore, this section will briefly study the substantial 
relationships between the underactuated, over actuated and equally actuated manipulators 
that are easily misunderstood in engineering applications. 

?5"#9:1#1441281#%+#):1#32710.8)3.)17#<.2'-3(.)%0#
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To begin with this section, one might first investigate a famous inverted pendulum system 
shown in Fig. 2, which is also a representative, underactuated mechanical system. This 
inverted pendulum system is a planar two degrees of freedom catenation mechanical 
system. The vehicle can only make reciprocal translation along the 2 -axis and the 
pendulum can only rotate about the pivot attached to the moving vehicle. 
In applications, only one actuation is provided to control the system, which seems to conflict 
with the definition of a fully actuated mechanism. In order to reveal the essence of this 
puzzling phenomenon, one might first turn to analyze the dynamics of this two-degree-of-
freedom system. 
Suppose the mass of the vehicle is denoted by * , the mass of the pendulum is 5  and the 
distance from the pivot attached to the vehicle to the mass center of the pendulum is 6  and 
the moment of inertia of the pendulum is denoted by 7 . The dynamics of the system can be 
immediately established via Lagrange method. The kinetic energy of the vehicle is: 

2

2
1 5

# 2*"8  

where 8"  represents the kinetic energy of the vehicle. 
The kinetic energy of the pendulum is: 
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where :"  represents the kinetic energy of the pendulum. 

 
Fig. 2 a single inverted pendulum system 
The total kinetic energy of the system is: 
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The potential energy of the system is: 

7cos5;6< #  

Therefore, the Lagrange function of the system is: 
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where =  indicates the Lagrange function. 
The dynamics equations for the two-degrees-of-freedom system shown in Fig. 2 can be 
expressed as: 
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where =  represents the torque exerted to the revolute joint that connect the inverse 
pendulum and the vehicle. 
l parallel manipulator, this chapter develops a general process to synthesize the 
manipulators with the specified mobility. The outstanding characteristics of the synthesis 
method are that the whole process is also analytical and each step can be programmed at a 
computer. Because of the restrictions of the traditional general mobility formulas for spatial 
mechanisms, a lot of mechanisms having special manoeuvrability might not be synthesized. 
However, any mechanism can be synthesized with this analytical theory of degrees of 
freedom for spatial mechanisms. 

!5#9:1#A.('7#<1.24#)%#'2A14)';.)1#):1#<%&'(')*#%+#.#<18:.2'4<#
The quick calculation approaches based on the algebra summations of the number of the 
links, joints and the constraints induced by the joints can not be completely perfected by 
itself. This is true even the analytical methods are applied in seeking the common 
constraints (Hunt, 1978)(Waldron, 1966)(Huang, 2006). These problems are becoming more 
and more obvious with the advent of spatial parallel manipulators. The primary 
considerations of the designers for the parallel manipulators have been focused on nothing 
but the mobility of the end-effector and its controllability. Therefore, the concept of general 
mobility of a mechanism should be divided into two basic concepts  ̶the degree of freedom of 
the end-effector and the number of actuations needed to control the end-effector. With this regard, 
this chapter first introduces two primary definitions: 
F'4*%*)*3%#!G#
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The DOF of an end-effector totally characterizes the motions of the end-effector including 
the number, type and direction of the independent motions (*hao et al, 2004a)(*hao et al, 
2006a). 
F'4*%*)*3%#7G#
The configuration degree of freedom (CDOF) of a mechanism with an end-effector indicates 
the independent number of actuations required to uniquely control the end-effector under a 
configuration (*hao et al, 2004b)(*hao et al, 2006c). 
Obviously, the DOF of an end-effector in number is not larger than 6 but the independent 
number of actuations required to uniquely control the end-effector might be any 
nonnegative integer. Bearing the above two definitions in mind, one can fall into two steps 
to investigate the mobility of a mechanism1the DOF of the end-effector and the CDOF of 
the mechanism with the prescribed end-effector. The former definition indicates the full 
instantaneous mobility properties of the end-effector through a mathematics concept of free 
mobility space while the later one presents the instantaneous controllability of the 
mechanism system. By definition 1, one can find that the DOF of an end-effector is only 
subjected to the constraint(s) exerted by the kinematic chain(s) connecting the end-effector 
with the fixed base or ground. Besides, the degree of freedom of the end-effector, 
instantaneously associated with the spatial configurations of the kinematic chain(s), should 
clearly depict the number, the direction and the type of the free motion of the end-effector 
instantaneously. Therefore, only analytical methods can fulfil such a task. 
After obtaining the free motions of the end-effector, an engineering question will naturally 
arise1how many actuations are needed to control the end-effectorj By definition 2, one can 
find that a checking process is given for verifying the controllability of the mechanism with 
the specified end-effector. Besides, this process can also allow the different selections of the 
actuation schemes, which is most adapted to the concept design of a manipulator. 
Consequently, the valid means to investigate the mobility of mechanisms can be addressed 
as: (1) investigate the instantaneous DOF of the prescribed end-effector; and (2) investigate 
the number of actuations required to uniquely control the end-effector of the mechanism. 
For the instantaneous characteristics of the mobility of a mechanism, only analytical means 
is acceptable for such a task. Because of the elegance in depicting the relationship between 
the motions and the constraints, reciprocal screw theory does be a well selection to 
accomplish the task. Therefore, the following analytical model for the mobility of a parallel 
manipulator will be built up by applying the reciprocal screw theory. 
According to reciprocal screw theory (Hunt, 1978)(Phillips, 1984)(Phillips, 1990)(Phillips et 
al, 1964)(Waldron, 1966)(Ball, 1900), a screw $  is defined by a straight line with an 
associated pitch >  and is conveniently denoted by six PlPcker homogeneous coordinates: 
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where s  denotes direction ratios pointing along the screw axis, srs *#0  defines the 
moment of the screw axis about the origin of the coordinate system, r  is the position vector 
of any point on the screw axis with respect to the coordinate system. Consequently, the 

screw axis can be denoted by the PlPcker homogeneous coordinates 
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Considering ! " >>> 22
00 sssssss #64#64  and presuming !3s , one obtains the instant 

pitch of a screw: 
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Therefore, the axis of the screw can also be denoted as: 

 ! "+ "

'2%? = * B A => @ *> R B># 2 2 2   (4) 

Assume that the vector of the projective point of the origin on the screw axis is represented 
by 

ACr , there will be 
ACrs >  and: 

 ! " ! " ! "
AAAA CCCC rssrsrsssrs 2#424#**   (5) 

According to equation (4), for the screw axis, there are: 
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which yields: 
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Consequently, if the Plücker coordinates of a screw are given, one can easily obtain the unit 
direction vector, s , the pitch, > , the screw axis and the vector of the projective point of the 
origin on the axis, 

ACr , with equations (1) through (7). 
If the pitch of a screw equals zero, the screw coordinates reduce to be: 
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which is just the PlPcker homogeneous coordinates of the screw axis. 
In fact, formula (8) uniquely defines a line in a three-dimensional space. Assume that point 
AC  is the projective point of the origin on a line 6  and point ,  is any other point on the 

line. Then, 
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where s  is a direction vector of line 6 , '  is the length of line segment ,CA . 
The moment of line 6  about the origin at point ,  will be: 

 srs
s
srsrs *#*,
,
-

.
/
/
0

1
6#*#

AA CC,
'

0   (10) 

From equations (9) and (10), one obtains that the moment of a line about the origin is 
irrelevant to the point’s selection on the line. 
If a screw passes through the origin of the coordinate system, the screw coordinates can be 
denoted as: 
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On the other hand, if the pitch of a screw is infinite, the screw is defined as: 
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where ! ""000#!  is a three dimensional vector. 
According to the above definitions, a screw associated with a revolute pair is a twist of zero 
pitch pointing along the pair axis while a screw associated with a prismatic pair is a twist of 
infinite pitch pointing in the direction of the translational guide line of the pair. 
From equation (11), one has known that the kinematic screw is often denoted in the form of 
PlPcker homogeneous coordinates: 

 ! ""R@AB*=#$   (13) 

where the first three components denote the angular velocity, the last three components 
denote the linear velocity of a point in the rigid body that is instantaneously coincident with 
the origin of the coordinate system. 

Similarly, !$  is defined as: 

 
"!!!!!!! R@AB*= ,
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where the first three components denote the resultant force and the last three components 
denote the resultant moment about the origin of the coordinate system. 

Two screws, $  and !$ , are called to be reciprocal if they satisfy the equation: 

 0#66666
!!!!!! RB@*A=BR*@=A   (15) 

Obviously, the free motions (general twists) $  and the prescribed constraints (general 

wrenches) !$  of an equilibrium rigid body should satisfy equation (15). Equation (15) is 
often written for short (Kumar, 1992): 
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From the Lagrange function, one immediately obtains: 
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Substituting the above equations into equation (24), one has: 
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Of course, in the underactuated condition, there is 0#= . The first formula in equation set 
(25) is the apparent actuation formula while the second one in equation set (25) is a hidden 
relationship of the mechanical system, in which the gravity, the inertia force and moment of 
the pendulum are associated precisely. As a matter of fact, therefore, this relationship 
depicted by the second formula in equation set (25) provided another actuation constraint 
for the two-degrees-of-freedom mechanical system in dynamics but not in statics. Therefore, 
the mechanical system shown in Fig. 2 is fully actuated in dynamics but not in statics. When 

0#
55
2  and 0#= , equation set (25) can be simplified as: 
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where k ? l is determined by the initial condition of the system and the sign should be kml 
in the case shown in Fig. 2. 
From equations (25) and (26), it is not difficulty to find that the inverted pendulum system 
shown in Fig. 2 can only keep a dynamic equilibrium but not a static equilibrium which is a 
primary requirement for a mechanism. 
A much more familiar example is the differential gear train mechanism used in the driving 
axle of all kinds of automobiles. The basic mechanism structure is shown in Fig. 3. The 
pinion gear transforms the torque from the engine to the driving axle shafts by a differential 
gear train mechanism, in which the ring gear shown in Fig. 3 acts as an actuator and the 
right and the left shafts act as executors. 
Obviously, this mechanism also has two degrees of freedom. However, the actuation is just 
one rotational input from the pinion gear. One might draw a conclusion in haste that this 
mechanism should be an outstanding representative example for the applications of 
underactuated mechanical systems because it is so widely used in the modern vehicles. This 
mechanical system is really quite different from the inverted pendulum system shown in 
Fig. 2 in that the hidden mechanical constraint or kactuationl is more easily ignored. The 
reaction difference between the right and left wheels from the road surface provides such an 
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kactuationl, which is apparent when the reactions to the right and left wheels from the road 
surface are different, and which often occurs when the vehicle makes a right or left turn. 
 

 
Fig. 3 the differential gear train mechanism 

Another facility usually used in civil engineering is the inertial rammer shown in Fig. 4. This 
can also be modelled with a planar mechanism shown in Fig. 5. The apparent actuation is 
provided by the eccentric force of the eccentric rotor under the actuation of the electric 
motor. However, the motion of the rammer’s body is indeterminate if the control of >4  is 
not exerted to the handle. Therefore, the inertia rammer is not an underactuated mechanical 
system but a fully actuated system although the apparent actuation seems to be restricted to 
the eccentric force resulting from the eccentric rotating rotor. 
 

     
Fig. 4 the inertia rammer                    Fig. 5 the mechanism of the inertia rammer 

From the above analysis, it is not difficult to find that all the underactuated mechanical 
systems are substantially actuation determinate from the viewpoint of mechanisms. 
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Over-determinate actuation manipulators also witnesses wide applications in mechanical 
engineering, especially in biomechanical engineering. In order to investigate the essence of 
these manipulators, this section addresses this problem via some mechanism examples. 
As a simple example, one might first investigate the motion of a vehicle with one degree of 
freedom under the actions of two persons shown in Fig. 6. The vehicle can only translate 
forward and backward along the road direction. However, two different actions are exerted 
to both sides of the vehicle. So, it is an over actuated mechanical system. 
 

 
Fig. 6 an over actuated mechanical system 

Out of question, the vehicle shown in Fig. 6 will move along the direction of the resultant 
force of the two persons, in spite of which the two actuations are not independent because 
these two actuations should satisfy that 222 ## 21 . Otherwise, the two actuations might not 
do continuous work to the vehicle. These additional constraints are also called compliant 
equations. 

 
Fig. 7 a planar four-bar mechanism with two actuations 

Next, one can consider a planar four-bar mechanism under two actuations shown in Fig. 7. 
Obviously, only one actuation is needed to control the mechanism. In engineering 
applications, however, it is also available to exert two actuations to increase the input torque 
or force to drive the mechanism to output a larger power. Therefore, the mechanism in such 
a case is a representative of the over actuated mechanical systems. 
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Following, one can investigate the problems that might be ignored or misunderstood. For 
the sake of conveniences, a coordinate system is established by setting the origin to 
superimpose with revolute joint ,  and 2 -axis along the link ,D  and 1 -axis 
perpendicular upward to link ,D . If the planar four-bar mechanism has a determinate 
motion, the equation below should hold: 

 ! " ! " 2
4

2
23

2
213 sinsincoscos 666666 #2626 @A@A   (27) 

Therefore, differentiating equation (27) with respect to time and rearranging yields: 
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where 
5
@  and 

5
A  represent the angular velocities of the crank ,0  and the rocker D+  

shown in Fig. 7, individually. 
Therefore, the actuations exerted to the crank ,0  and the rocker D+  should keep in a 
precise relationship specified by equation (27). Otherwise, the link 0+  might be cracked 
due to the increasing internal forces. Equation (27) or (28) is the compliant equation for the 
over actuated manipulator shown in Fig. 7. 
Consequently, it is not difficult to find that there always are compliant constraint equations 
for the over actuated mechanical systems. And therefore, these mechanical systems are also 
substantially equally actuated. 

?5?#9:1#-0%&(1<4#)%#&1#2%)17#'2#12;'2110'2;#.--('8.)'%24#
The dexterity of an underactuated manipulator differs from the dexterity of a fully actuated 
one, even if their mechanical structures are identical. Therefore, the underactuated 
mechanical systems are widely used in the cases for fault tolerance and energy saving 
purposes. From the above analysis, one knows that any mechanical system that has a 
determinate motion should be an equally actuated system in essence. Next, one investigates 
an underactuated mechanical finger with return actuation shown in Fig. 8. 
This mechanism is used in the finger of the United States patent initially applied by Gosselin 
et al (Gosselin & Lalibertd, 1998) for dexterity hand in 1998. The primary structure of the 
mechanism shown in Fig. 8 (Birglen & Gosselin, 2006a) is a planar four-bar mechanism. 
Links ,0  and ,D  are simultaneously pivoted with the fixed wrist. Links ,0  and 0+  are 
connected by a passive spring. Next, the mobility of the mechanism will be investigated in 
several cases. 
Firstly, when the finger does not contact any object, the links ,0  and 0+   connected by a 
passive spring might be disposed as one link, and therefore, ,0+D#  forms one link and 
rotates about the fixed pivot, , , under the actuation of the force 4 . When ,0  contacts a 
target object, the link ,0  will degenerate to an unmovable base attached to the wrist, and 
therefore, the spring will be deform under the action of the force 4  and finger ,0+D#  
forms a real four-bar mechanism. This will be holding until the side 0#  also touches the 
boundary of the target object, after which the continuous increasing of the force 4  will only 
results the deforming of the target object.  
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Fig. 8 underactuated mechanical finger with return actuation 

The above analysis indicates that the so called underactuated mechanical finger is equally or 
fully actuated at any instant from the viewpoint of mechanisms. Consequently, no matter 
what kind does a mechanism belong to, it should have a determinate motion and equal 
actuation(s) at any instant, which should be particularly noticed in the concept design of 
underactuated mechanical systems. Theoretical and example analysis indicate that the 
underactuated, over actuated and fully actuated mechanical systems are all substantially 
equally actuated mechanisms. 

B5#,*2):14'4#%+#.#4-.)'.(#-.0.((1(#<.2'-3(.)%0#C'):#.#4-18'+'17#<%&'(')*#
Usually, suspension is a general term of the equipments transforming forces and moments 
from the wheel to the vehicle body. Its primary function is to determine the geometry of the 
wheel motion during jounce and rebound, and to withstand forces and moments on the 
suspension in accelerating motion (Raghavan, 1996). The ride and handling characteristics of 
a vehicle are heavily dependent on the kinematic and compliance properties of the 
suspension mechanism (Raghavan, 2005). Compared with dependent suspensions, 
independent suspensions can eliminate undesirable dynamic phenomena such as shimmy 
and caster wobble resulting from wheel coupling in solid-axle suspensions (Raghavan, 
1996). The most common independent suspension mechanisms utilized in automobiles are 
short-long arm suspension (Suh, 1998), the MacPherson strut (Raghavan, 2005), the 
multilink suspensions (Simionescu, 2002), and the short-long arm front suspension with a 
true kingpin (Murakami, 1989), etc. Most automotive independent suspension mechanisms 
are single degree-of-freedom mechanisms with the predominant motion being wheel jounce 
and rebound. In order to allow the wheel to pass the uneven terrain without slipping, 
Chakraborty and Ghosal (Chakraborty & Ghosal, 2004) investigated the kinematics of a 
wheeled mobile robot moving on uneven terrain by modeling the wheels as a torus and 
proposing a lateral passive joint. Applications indicate that the wheel orientation and 
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position parameters such as kingpin, caster, camber, toe change, axes distance, and the 
wheel track are primary consideration in the design of suspension mechanism. These 
parameters, as a matter of fact, are dependent on the wheel jounce and rebound, an 
independent parameter (Raghavan, 2005). 
Therefore, a particular rigid guidance mechanism whose end-effector only has one straight 
line translation should maintain the orientation and position parameters invariable. Yan and 
Kuo (Yan & Kuo, 2006) addressed the topological representations and characteristics of 
variable kinematic joints, which might be utilized in spatial mechanism synthesis. By 
considering workspace, dexterity, stiffness and singularity avoidance, Arsenault and 
Boudreau (Arsenault & Boudreau, 2006) discussed the synthesis problems of planar parallel 
mechanisms. In the history of mechanism synthesis, a significant example is that the 
creation of linkages to produce exact straight line motion was an important engineering as 
well as a mathematical problem of the 19th century (Kempe, 1877). While many engineers 
and mathematicians were searching for a 4- 5- or 6-bar straight line linkage all suffered from 
the fact that they could not attain such a motion in the middle of 19th century, Peaucellier 
investigated an eight bar linkage shown in Fig. 9 and discovered he could generate an exact 
straight line motion from a rotary input. 
 

 
Fig. 9 Structure of Peaucellier-Lipkin Eight-Bar Linkage 

This invention was recognized by several mathematicians as being very important to the 
design of general mathematical calculators (Kempe, 1877). This eight-link linkage was the 
one of the first to produce exact straight line motion and was independently invented by a 
French engineer named Peaucellier and by a Russian mathematician named Lipkin (Kempe, 
1877), which is therefore often called Peaucellier-Lipkin eight-link linkage. 
However, Peaucellier-Lipkin linkage is mostly utilized as a motion generator but not a rigid 
guidance mechanism. Obviously, because of its complexity, such a mechanism can not be 
used as a suspension in spite of the fact that it can really make the wheel move in a straight 
line during jounce and rebound. Therefore, this section first discusses the synthesis 
processes with the analytical model of the instantaneous mobility of a manipulator for the 
rigid guidance mechanism with the specified mobility; and then presents a rectilinear 
motion generating manipulator that can be utilized as a suspension mechanism. 
The general synthesis process might be: 
8)'H# !G Express the free motions required for the prescribed end-effector in PlPcker 
coordinates at a Cartesian coordinate system. 
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The Plücker coordinates of the specified motions should be firstly expressed in a Cartesian 
coordinate system. This chapter supposes that the twists of the free motion(s) of the end-

effector are denoted by 4
#$)$ . 

8)'H#7G Solve the constraint(s) exerted to the end-effector by its kinematic chain(s). 
According to reciprocities between free motion(s) and constraint(s) of an end-effector, the 
constraint(s) applied to the end-effector can be solved with the equation (16): 

 0#,
-
./

0
1 +

#$)

"4
#$) #$$   (29) 

where 4
#$)$  indicates the specified free motion(s) of the end-effector and +

#$)$  denotes any 
constraint applied to the end-effector. 
8)'H#IG Decide the number of kinematic chains, )( 1+55 , that will be used to connect the 
end-effector with the fixed base. 
If every link in the chain is connected to at least two other links, the chain forms one or more 
closed loops and is called a closed kinematic chain; if not, the chain is referred to as open 
(Shigley & Uicker, 1980). For the later open chain case, the synthesis is simply stated as: any 

kinematic chain is feasible if the twist basis, 4
0%$ , of the chain contains 4

#$)$ . However, the 

following steps should be further discussed if the mechanism is a closed one. 
8)'H#JG Synthesize the terminal constraint(s) of each kinematic chain. 
Suppose 

 $%
&

'(
)# $+

#$)
+
#$)

+
#$)

+
#$) $$$$ !21    (30) 

where $  indicates the dimension of the constraint basis of the end-effector. 
Suppose that the terminal constraint(s) of the ith ( 5% ,,, !21# ) kinematic chain is denoted 

by +
%$ , the terminal constraint(s) of the chain might be synthesized with: 

 %
+
#$)

+
% E$$ #   (31) 

where B C
%%$%%% EEEE !21# , and ! ""%$%%%F (((E !21#  and %$F ,,, !21# . 

For a feasible mechanism that makes the end-effector only have the prescribed free 
motion(s), the necessary and sufficient criterion is that the resultant terminal constraint(s) of 

all these 5  kinematic chain(s), +
%

5

%
G $

1#

, should be equivalent to +
#$)$ . .-*(# *(# 6,11'?# )-'#

63%()/C6)*3%#6/*)'/*3%#!#34#)-'#4',(*K1'#L*%'0,)*6#6-,*%(. 
The necessity and sufficiency of this criterion can be immediately deduced from equation 
(29) with linear algebra theory. 

8)'H#MG Solve the twist basis of the ith kinematic chain with the terminal constraints, +
%$ , 

synthesized in step 4. 
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With reciprocal screw theory, a basis of the twist(s) of the ith kinematic chain, denoted by 
4
0%$ , can be obtained by solving the following equation: 

 0#,
-
./

0
1 4

0

"+
% %

#$$    (32) 

where +
%$  represents the terminal constraint(s) of the ith kinematic chain synthesized in 

step 4. 
8)'H#DG Synthesize the twist(s) of the ith kinematic chain with the twist basis of the ith chain, 
4
0%$ , obtained in step 5. 

Suppose 

 $
%

&
'
(

)
# %$

%%%%

4
0

4
0

4
0

4
0 $$$$ !21    (33) 

where %$  indicates the dimension of the twist basis of the ith ( 5% ,,, !21# ) kinematic chain. 
According to linear algebra, any twist of the ith kinematic chain can be expressed as the 
linear combinations of the twist basis of the chain: 

 +40
4
% %

' $$ #   (34) 

where ! ""$%---+ !21# . 

Consequently, the twists of each kinematic chain can be synthesized through equation (34). 
However, in order to keep the twists of the ith chain to be equivalent to the twist basis of the 
chain, the rank of the total twists synthesized through equation (34) should equal the 
dimension of the twist basis of the chain. .-*(#*(#6,11'?#)-'#63%()/C6)*3%#6/*)'/*3%#7#34#)-'#
4',(*K1'#L*%'0,)*6#6-,*%(. 
The necessary and sufficient of this criterion can be immediately obtained from equation 
(32). 
According to the construction criteria 1 and 2, the required synthesis target of a mechanism 
can be gradually accomplished with the above six steps. Obviously, with these six steps, 
different person might synthesize different kinematic chains and different mechanisms. 
However, all the end-effectors of the mechanisms synthesized with the same criteria will 
surely have the identical specified free motion(s).  
The next section will apply these steps to synthesize a rigid guidance mechanism that can be 
utilized as a suspension of an automobile. 
The synthesis target now is to use the least number of links and pure revolute joints to 
design a mechanism whose end-effector has one pure translation along an exact straight 
line; therefore, the mechanism must be a closed one. The reason is that it will need at least 
two actuations to generate a pure straight line translation with an open chain mechanism. 
And therefore, for the purpose of the suspension required, one at least needs two kinematic 
chains to generate a pure straight line translation with one actuation input. According to 
step 1, the specified free motion of the end-effector should be expressed in a Cartesian 
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coordinate system. Without loss of generality, the precise straight line translation of the end-
effector can be assumed to parallel 3 -axis. Therefore, the free motion can be described in 
Plücker coordinates as: 

 ! ""4
#$) 100000#$    (35) 

So, the target now can be depicted as whether one can find two sets of screws whose pitches 

represented by equation (3) are all zeros provided that they were all reciprocal to 4
#$)$  of 

equation (35). 
According to step 2, substituting equation (35) into equation (29) yields the constraints 

exerted to the end-effector, +
#$)$ : 

 $%
&

'(
)# 54321 +

#$)
+
#$)

+
#$)

+
#$)

+
#$)

+
#$) $$$$$$    (36) 

where ! ""+
#$) 0000011 #$  represents a force along 2 -axis, 

! ""+
#$) 0000102 #$  represents a force along 1 -axis, ! ""+

#$) 0010003 #$  

represents a torque about 2 -axis, ! ""+
#$) 0100004 #$  represents a torque about 1 -

axis, and ! ""+
#$) 1000005 #$  represents a torque about 3 -axis. 

From equation (32), it is not difficult to find that the sum of the number of the independent 
twists and the number of the terminal constraints of a chain is six. In order to reduce the 
number of revolute joints, one might have to increase the number of the terminal constraints 
of the chains as many as possible. According to equations (31) and (36), the maximum 
number of the terminal constraints of a chain is five. However, if such a structure scheme is 
used, one may find each kinematic chain only consists of one revolute joint, which is 
unfeasible in reality. Similarly, it is not difficult to find that only when each kinematic chain 
provides three terminal constraints at most, can the structure scheme is feasible. 
With equation (31), one can synthesize the terminal constraints of these two kinematic 
chains, individually. Selecting different ! "521 ,,, !#%(%  and substituting them into 

equation (31), one can synthesize three independent terminal constraints for the first 
kinematic chain, for example: 

Assuming 

$
$
$
$
$
$

%

&

'
'
'
'
'
'

(

)

#

100
010
000
000
001

1E , one obtains 

 $%
&

'(
)# 321

1111
++++ $$$$   (37) 



 Parallel Manipulators, Towards New Applications 

 

486 

where ! ""+
0000011

1 #$  indicates a force along 2 -axis, ! ""+
0100002

1 #$  

indicates a torque about 1 -axis, and ! ""+
1000003

1 #$  indicates a torque about 3 -
axis. 

Assuming 

$
$
$
$
$
$

%

&

'
'
'
'
'
'

(

)

2
#

100
00
00
00
00

2

'
.

.
'

E , one can obtain 

    $%
&

'(
)# 321

2222
++++ $$$$                 (38) 

where ! ""+
.' 00001

1 #$  denotes a force along the direction ! "".' 0 , 

! ""+
'. 00002

1 2#$  denotes a torque about the direction ! ""'. 02 , 

! ""+
1000003

1 #$  denotes a torque about 3 -axis and 03'. . 
Because D E 54im 21 #EE?:'$ , , the resultant terminal constraints of these 2 kinematic chains, 

+
%

%
G $

2

1#

 must be equivalent to +
#$)$ . So the construction criterion 1 is satisfied. 

According to equation (32), one immediately obtains the twist bases for the two kinematic 
chains with equations (37) and (38): 

 $%
&

'(
)# 3

1

2

1

1

11

4
0

4
0

4
0

4
0 $$$$   (39) 

where ! ""4
0 0000011

1
#$  represents a rotation about 2 -axis, 

! ""4
0 0100002

1
#$  represents a translation along 1 -axis, ! ""4

0 1000003

1
#$  

represents a translation along 3 -axis, and 

 B C3

2

2

2

1

22

4
0

4
0

4
0

4
0 $$$$ #    (40) 

where ! ""4
0 0000sincos1

2
@@#$  denotes a rotation about the direction 

! ""0sincos @@ , ! ""4
0 0cossin0002

2
@@2#$  denotes a translation along the 

direction ! ""0cossin @@2 , ! ""4
0 1000003

2
#$  denotes a translation along 3 -axis, 

and 
22

cos
.'

'

6
#@  and 

22
sin

.'

.

6
#@ . 

According to step 6, one can synthesize the twists of the two kinematic chains with their 
twist bases (39) and (40), individually. Considering the construction criterion 2, one can find 
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that the least number of twists in each kinematic chain is three. Therefore, the twist of the 
first kinematic chain can be synthesized below with equation (34): 

 ! ""4
0

4
0

4
0

4' ------ 3213211 0003

1

2

1

1

1
#66# $$$$   (41) 

Substituting equation (41) into equation (3) yields: 

 01 #4'>   (42) 

Equation (42) indicates that any twist having the form of equation (41) will naturally satisfy 
the free motion requirements of the end-effector. The Cartesian coordinates of the joint, 

1,r , 

can be found from equations (7) and (9): 

"
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To make the twists of the chain be equivalent to the twist basis, there are at least three twists 
indicated in the form of equation (41). 
Suppose 11 #-  and the three joints’ coordinates are 

! "
! "
! "8

8
9

88
:

;

#
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31'
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r
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then, the twists of the first kinematic chain will be: 

 $%
&

'(
)# +0, 444

,0+ 111 $$$$   (43) 

where ! ""4, 0000011 #$  represents a rotation about 2 -axis, 

! ""00
4

130 2# 00011$  represents a rotation about a line passing through point 

! "000 312  and paralleling 2 -axis, and ! ""++
4

13+ 2# 00011$  represents a 

rotation about a line passing through point ! "+++ 312  and paralleling 2 -axis. 

According to equation (34), a twist of the second kinematic chain, denoted by 4'
2$ , can be 

expressed as: 

 ! ""4
0

4
0

4
0

4'
0 32211321 cossin0sincos3

2

2

2

1

22
F@F@F@F@FFFF 2#66# $$$$   (44) 

where %F  denote real numbers and 321 ,,#% . 
Substituting equation (44) into equation (3) yields: 
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 02 #
4'>    (45) 

Equation (45) indicates that any twist having the form of equation (44) will naturally satisfy 
the free motion requirements of the end-effector. 
The Cartesian coordinates of the joint, 

2,r , can be found from equations (7) and (9): 
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To keep the twists of the chain be equivalent to the twist basis, one can only select three 
independent twists indicated with equation (44) by selecting three sets of ! "321 FFF . 

If one supposes 11 #F , 43#2F , @@F cossin3 44 12 2#  and @@ sincos 44 12. 6# , he obtains 

the coordinates of revolute joint 4 , ! ""4444 312#r ; similarly, if one supposes 11 #F , 

#3#2F , @@F cossin3 ## 12 2#  and @@ sincos ## 12. 6# , he obtains the coordinates of 

revolute joint # , ! ""#### 312#r ; and if one supposes 11 #F , D3#2F , 

@@F cossin3 DD 12 2#  and @@ sincos DD 12. 6# , he can obtain the coordinates of revolute 

joint D , ! ""DDDD 312#r . Therefore, the three joints’ coordinates can be assumed 

! "
! "
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then, the twists of the second kinematic chain will be: 

 $%
&

'(
)# D#4 444

4#D 222 $$$$    (46) 

where ! ""44 0000sincos2 @@#$  represents a rotation about a line passing through 

the origin of the coordinate system and in the direction ! ""0sincos @@ , 

! ""####
4

1233# @@@@@@ cossincossin0sincos2 22#$  represents a rotation about a line 

passing through point ! "### 312  and in the direction ! ""0sincos @@ , and 

! ""DDDD
4

1233D @@@@@@ cossincossin0sincos2 22#$  represents a rotation about a line 

passing through point ! "DDD 312  and in the direction ! ""0sincos @@ . 
With equations (43) and (46), one can synthesize a spatial six link mechanism ,0+D#4  
shown in Fig. 10. It is not difficult to find that @  is the angle from 2 -axis to the '1 -axis of 
the revolute joint 4  and the revolute joints 4 , #  and D  have the same axis direction, 
which is denoted by ! ""4#D 0sincos @@#n . 
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Fig. 10 a Spatial Six-Link Mechanism with a Straight line Translational End-Effector 

From the above analysis, it is not difficult to find that the two kinematic chains ,0+  and 
4#D  can surely guarantee the pure straight line translation of the end-effector +D  so long 
as ,0+$  and 4#D$  do not descend in ranks. To analyze the sensitivity of the structure 
stability to the angle @ , one should turn to the equations (37) and (38) and investigate the 
resultant terminal constraints, which can be expressed with: 
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where 
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6
#@  and 

22
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.

6
#@ . 

If the terminal constraints denoted by ! "@+
+D$  are well conditioned, the mechanism will 

have fine structure stability. From equations (29) and (47), one can find that the end-effector 

will have one straight line translation along 3 -axis so long as ! " 5#,
-
./

0
1 @
+
+D!'$( $ , which can 

be immediately transformed to investigate the following sub matrix of ! "@+
+D$ : 
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Letting ! "! " 0467 #@, , one immediately obtains 0#@  or G@ # . Therefore, in order to keep 
the end-effector +D  have one straight line translation along 3 -axis, there will be 03@  and 

G@ 3 . So, the rigid guidance mechanism synthesized in this chapter has a wider adaptation 
of angle between the planes of its two kinematic chains. Now, the sensitivity of the structure 
stability to the angle @  of the mechanism can be judged by the condition number of matrix 
! "@,  (Kelley, 1995). Let 

 ! " 1
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m89
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where ! "2,-H$)  indicates the condition number of matrix , , 2,  indicates the 2-norm of 

matrix , , and ,
-
./

0
1 ,,"H  indicates the eigenvalues of matrix ,," . 

 
 

 
Fig. 11 a Spatial Six-Link Mechanism with the Best Structure Stability 

The solution of equation (48) is: 
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Equation (49) indicates that the mechanism will have the best structure stability when 

2
G@ # , which is shown in Fig. 11. Compared with Peaucellier-Lipkin eight-link linkage, the 

spatial six-link mechanism synthesized in this chapter has the least links and revolute joints, 
and the whole end-effector +D  can make an exact straight line translation while Peaucellier-
Lipkin eight-link linkage can only allow one specified point to make such a motion. 
As a matter of fact, the mechanism shown in Fig. 11 is a Sarrus linkage. However, the 
mechanism proposed here does not necessarily require that the two kinematic chains must 
within two orthogonal planes which are needed for Sarrus linkage. The so-called Sarrus 
linkage, which is shown in Fig. 12, is a linkage that converts circular motion to linear motion 
by using hinged squares. The square end-effector 21++  can make an exact straight line 
translation along 3 -axis which shows better properties both in mechanical structure and in 
kinematics than those of Peaucellier-Lipkin eight-link linkage. However, because of the 
limited workspace and the uneconomic mechanism architecture, the restrictions of Sarrus 
linkage shown in Fig. 12 compared with the one shown in Fig. 11 are obvious. 
 

 
Fig. 12  the Structure of Sarrus Linkage 
 
 

 
 

Fig. 13 Configuration of the Spatial Seven-Link Mechanism 
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As mentioned in step 6, in order to keep the twists of the chain to be equivalent to the twist 
basis, the rank of the twists of each kinematic chain synthesized through equation (34) 
should equal the dimension of its twist basis. Therefore, if one or more such twists are 
added to each kinematic chain, the free motions of the end-effector will not be changed. As 
an example, the mechanism shown in Fig. 13  is the derivative form of that in Fig. 10 by 
adding one twist 

1I$  to the kinematic chain 4#D . Where 

! ""III 23 0010 2#$  

The two kinematic chains of the end-effector +D  are now changed to be ,0+  and D4#I1 . 
The twists of them two are: 
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It is not difficult to find that the terminal constraints of kinematic chains ,0+  and D4#I1  
are still expressed by equation (36). And therefore, the free motion of the end-effector +D  is 
still a straight line translation along 3 -axis shown in Fig. 13. As a result, the free motions of 
the end-effector will not be changed if one or more revolute joints whose Plücker 
coordinates have the form of equation (44) are added in the second kinematic chain. 
Similarly, the free motions of the end-effector will not be changed either if one or more 
revolute joints whose Plücker coordinates have the form of equation (41) are added to the 
first kinematic chain. 
 
 

 
 

Left: Front Suspension                  Right: Rear Suspension 

 

Fig. 14 a Front Suspension and a Rear Suspension 
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For engineering applications, the end-effector +D  in Fig. 11 or Fig. 13 can be utilized as the 
guiding equipment of a mechanism that requires a precise linear translation, such as the 
independent suspension of automobile. Because the end-effector of the rigid guidance 
mechanism can make an exact straight line translation, the front and rear suspensions made 
up of such a mechanism shown in Fig. 14 allow the orientation and position parameters of 
the wheels such as kingpin, caster, camber, and axes distance and wheel track to be 
constant. These merits not only enhance the ride and handling of the vehicles, but also 
reduce the wearing of the tires during jounce and rebound. 

D5#E%28(34'%2#
This chapter focuses on the mobility analysis and synthesis of spatial parallel manipulators. 
It focuses on developing an analytical methodology to investigate the instantaneous DOF of 
the end-effector of a parallel manipulator and the instantaneous controllability of the end-
effector from the viewpoint of the possible actuation schemes for the parallel manipulator. 
Via comparing the differences and essential mobility of a set of underactuated, over 
actuated and equally actuated manipulators, this chapter demonstrates that the 
underactuated, over actuated and fully actuated manipulators are all substantially equally 
actuated mechanisms. This work is significantly important for a designer to contrive his or 
her manipulators with underactuated or over actuated structures. Based on the analytical 
model of the DOF of a spatial parallel manipulator, this chapter also investigates a general 
process to synthesize the manipulators with specified mobility. The outstanding 
characteristics of the synthesis method are that the whole process is also analytical and each 
step can be programmed at a computer. Because of the restrictions of the traditional general 
mobility formulas for spatial mechanisms, a lot of mechanisms that might not be 
synthesized directly with the general mobility formulas could be synthesized with this 
analytical theory of degrees of freedom for spatial mechanisms. 
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1. Introduction 
In biological kinematics, motion of a spine is realized by a number of functional spinal units 
(FSU), as shown in Fig.1 (spineuniverse.com). Each FSU consists of two adjacent vertebras 
and physiological organization joining FSUs end-to-end (Hou, 2005). Owe to the spine, 
vertebrates have more flexible torsos than others. To understand, simulate and utilize the 
motion of vertebrate’s torso, international researchers have made many bio-vertebrate 
robots such as robotic dog (bostondynamics.com), fish (robotic-fish.net), snake (Hirose; 
nasa.gov; ri.cmu.edu; snakerobots.com), rabbit (jsk.t.u-tokyo.ac.jp), lizard (birg.epfl.ch) and 
humanoid robot (kawada.co.jp; sony.net; world.honda.com; Giuseppe et al., 2003). 
 

   
Fig. 1. A human-spine and FSU physiological organization 

Torsos of some bio-vertebrate robots adopt torsos without bio-spine structure. As the most 
advanced quadruped robot on Earth, BigDog (bostondynamics.com) adopted rigid torso 
which result in the failure to realize the motion between shoulder and waist. 
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To improve flexibility, some bio-vertebrate robots adopt bio-spine torso, which means a 
number of functional kinematic units (FKU, working as FSU) joined end-to-end through 
joining structure. Similar with the spine for vertebrates, the bio-spine torso enable 
maneuverability of bio-vertebrate robots. High maneuverability qualifies robotic fishes for 
the oceanographical observation, the leak detection on pipelines, the search for mines and 
the underwater archaeological exploration (robotic-fish.net). It also makes robotic snake be 
competent for search-and-rescue mission (ri.cmu.edu), exploring and building in space 
(nasa.gov) and moving both in water and on ground (Hirose). 
Humanoid robots, as an special class of bio-vertebrate robots, have much wider applications 
than others. Researchers believe humanoid robots may be adopted in entertainment, 
cooperative works, maintenance and security task (Kazuo, 2003). Torsos of these robots are 
carried out in different ways (kawada.co.jp; sony.net; world.honda.com; Giuseppe, Hun-ok 
et al., 2003). ASIMO will realize 3-DoF for head and 1 for torso in next generation 
(world.honda.com); SDR-4X II realized 4-DoF for neck and 2 for torso (body) (sony.net); 
HRP-2 realized 2-DoF for head and 1 for torso (body) (kawada.co.jp); WABIAN-RV realized 
4-DoF for neck and 3 for torso (Trunk) (Giuseppe, Hun-ok et al., 2003). From a medical point 
of view, vertebras of human being are joined by intervertebral disc, ligaments and etc. 
Translation for one end of a spine to another along the axis of spine is mainly realized by 
bending, stretching and compressing ligaments and intervertebral discs. The range of such a 
translation is so small that can be ignored. Therefore, one end of spine for human has 3 
rotational and 2 independent translational DoFs (3R2T) relative to another instead of 
theoretical 6 DoFs. 
To the best of our knowledge, most existing humanoid robots accomplish motion of torso 
through a serial mechanism. For a serial manipulator, the motor closed to the base has to 
bear the mass of the motors closed to the manipulating end. Consequently, the link closed to 
the base is much stronger than that closed to the manipulating end, which exhausts extra 
energy and slows down the reaction. Different with a serial manipulator, a parallel 
manipulator may assembled all motors on the base. Such a base-actuator structure will 
lighten links and consequently improve working speed. For example, DELTA, a famous 
successful parallel manipulator, “the use of base-mounted actuators and low-mass links allows the 
mobile platform to achieve accelerations of up to 50 G in experimental environments and 12 G in 
industrial applications” (parallemic.org). Moreover, kinematic performance of a spine for 
vertebrate is closed to isotropy. However, a parallel manipulator does not necessarily have 
isotropic kinematical performance as a serial manipulator. To achieve the kinematical 
performance closed to isotropy, a parallel manipulator should be fully-symmetrical (FSPM) 
(Mohamed, 1984), which means identical limbs, symmetrical assembly condition and 
actuating mode. 
To simulating the motion of a human spine, the manipulator should satisfy not only on 
mobility property, reachable workspace and isotropic kinematical performance, but static 
and dynamic performance. A spine of human usually can work under two different modes: 
active mode and passive mode. Under active mode, muscles and ligaments control the 
motion of the spine following the person’s will. Under passive mode, the spine passively 
moves under the outside load. To satisfy both modes, the manipulators had better to have 
less prismatic or cylindrical pairs considering that passive translation may result in extra 
resistance caused by non-coaxial and low working speed especially for ball screw, which 
will lead poor mechanics  performance. 
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Considering the requirement mentioned above, a 3R2T 5-DoF base-actuator FSPM without 
prismatic or cylindrical pairs is necessary for an simple and efficient spine motion simulator. 
In the currently study, three such manipulators, 5-RRR(RR), 5-(RRR)RR and 5-(RRR)(RR) 
had been selected as the spine motion simulators. Respective kinematics properties are also 
illustrated and compared with each other. On this basis, a 5-RRR(RR) prototype is designed 
and manufactured as the human spine motion simulator prototype. Motion capacity 
between the prototype and different parts of human spine are compared. In the rear part of 
the literature, future work for further improve the simulation capacity of the prototype is 
planned. 

2. Manipulator enumeration 
Type synthesis of 3R2T FSPM had been a difficulty (Merlet, 2000) and hot topic until dozens 
of them are proposed (Jin et al., 2001; Fang & Tsai, 2002; Huang & Li, 2002; Kong & Gosselin, 
2002; Giuseppe, Lim et al., 2003; Li et al., 2004). Comparing with the degree of concern for 
them in type synthesis, their application seems to be an inactive area.  
 

                           
(a) 5-RRR(RR)           (b) 5-(RRR)RR          (c) 5-(RRR)(RR) 

Fig. 2. Three FSPMs for spine-motion simulator 

Among near twenty theoretical types of 3R2T FSPMs currently, there are only three 
manipulators without passive prismatic and cylindrical pairs, including  5-RRR(RR), 5-
(RRR)RR, 5-(RRR)(RR) as shown in Fig.2, where “AB” denotes axes of pairs A and B are 
parallel, “(AB)” denotes axes of pairs A and B intersect at a common point. 

2.1 5-RRR(RR) 

   
(a)                                                                               (b) 

Fig. 3. 5-RRR(RR) 
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For a 5-RRR(RR) parallel manipulator shown in Fig. 3, the movable and base platforms are 
connected by five identical limbs each with five revolute joints. Axes of three joints adjacent 
to the base platform are perpendicular to the base; the other two intersect at point O2. The 
line passing through the origin O1 and O2 is perpendicular to the base platform. Let the x-
axis be normal to axis of the first joint and z-axis point from O1 to O2. In such a coordinate 
frame, the reciprocal screw (Ball, 1900; Hunt, 1978) of limb screw system is $r1 = [0,0,1; 0,0,0], 
whose axis is normal to the base, as shown in Fig. 3(b). The reciprocal screws of five limbs 
are the same. So the five constraints exerting on the movable platform form a common 
wrench with zero-pitch which constrains the translational freedom along the z-axis. So the 
movable platform has three rotational and two translational freedoms in a plane parallel to 
the base platform. As all actuators are locked, the screw system changes to be 

$2 = [S2; S02] = [0,0,1; p2,q2,0] 

$3 = [S3; S03] = [0,0,1; p3,q3,0] 

$4 = [S4; S04] = [l4,m4,n4; p4,q4,0] 

 $5 = [S5; S05] = [l5,m5,n5; p5,q5,0]  (1) 

According to the screw theory (Ball, 1900; Hunt, 1978), it can be found that $r1 and $r2 are the 
reciprocal screws for the screw system expressed in Eq.(1) by inspection, shown in Fig. 3(b). 
The axis of $r2 is the intersecting line of two planes PR2R3 and PR4R5. PRiRj denotes the plane 
determined by the axes of kinematic pairs Ri and Rj. The equation system for the axis of $r2 
is 

N1 · [x-xR2, y-yR2, z-zR2] = 0 

 N2 · [x-xo2, y-yo2, z-zo2] = 0  (2) 

where N1 and N2 denote the normal vectors of the plane PR2R3 (N1 · S2 = N1 · S3 = 0) and plane 
PR4R5 (N2 · S4 = N2 · S5 = 0), respectively. [xo2, yo2, zo2] and [xR2, yR2, zR2] are the coordinates of 
O2 and the center point of the 2nd  kinematic pair adjacent to the base, respectively.  
In the general configuration, five $r2 of five limbs are linear independent and every $r2 is 
linear independent with the common constraint $r1. So there are six linear independent 
constraints exerting on the movable platform when the five actuators are locked. Therefore 
the selection of the base actuators is feasible and the manipulator is fully-symmetrical. 
However, the manipulator will be singular if the configurations of all five limbs are identical 
as shown in Fig. 3(a). Under such a configuration, the five reciprocal screw $r2 with zero-
pitch of five limbs are distributed on a single hyperboloid of one sheet. Since the rank of 
screws on a hyperboloid of one sheet with one current is three, so the rank of constraints 
exerting on the movable platform is not six but four when all actuators are locked. That 
means the movable platform can still move after locking the actuators, and it is the second 
class of singularity in ref. (Gosselin & Angeles, 1990). To avoid such a singularity, the 
kinematic pairs which are not mounted on the base or movable platforms should be 
assembled with a little difference. For example, two limbs can be assembled in another 
current as shown in Fig. 4. This method is valid for currently existing 5-DoF FSPMs. 
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Fig. 4. Assembly condition for singularity avoidance 

2.2 5-(RRR)RR 
Although 5-(RRR)RR has a different structure with 5-RRR(RR), they have the similar 
constraint relationship, that is constraint screw of five limbs are the same. Hence, the 
mobility of 5-RRR(RR) is analyzed here in a simple way. In the similar coordinate frame in 
Fig.3(b), the reciprocal screw of five limb screw systems for 5-(RRR)RR are the same which 
form a common wrench $r1 = [0,0,1; 0,0,0] constraining the translation along z-axis. The 
manipulator is the same with 5-RRR(RR) after locking all actuators, which means movable 
platform is fixed when all five actuators are locked at general configuration. Hence, base-
actuator mode is valid for the manipulator 5-(RRR)RR. 

2.3 5-(RRR)(RR) 

 
(a)                                                                                 (b) 

Fig. 5. 5-(RRR)(RR) 

For a 5-(RRR)(RR) manipulator, the movable and base platforms are connected by five 
identical limbs each also with five revolute joints. Axes of three revolute joints adjacent to 
the base platform (R1, R2, R3) intersect at a point O1. The other two (R4, R5) intersect at 
another point O2. Let O1 be the origin, the x-axis be along the axis of R1 and z-axis be 
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perpendicular to the base platform. In such a coordinate frame, the reciprocal screw of the 
screw system is a wrench with zero-pitch   

 $r1 = [O2; 0,0,0]  (3) 

whose axis passes through both O1 and O2. The five reciprocal screws of five limbs are the 
same. So these constraints exerting on the movable platform form a common wrench with 
zero-pitch which constrains the translational freedom along a line passing through O1 and 
O2. So the movable platform has three rotational and two translational freedoms. As all 
actuators are locked, the screw system changes to be 

$2 = [S2; S02] = [l2,m2,n2; 0,0,0] 

$3 = [S3; S03] = [l3,m3,n3; 0,0,0] 

$4 = [S4; S04] = [l4,m4,n4; O2 × S4] 

 $5 = [S5; S05] = [l5,m5,n5; O2 × S5]  (4) 

The reciprocal screws for the screw system in Eq.(4) are $r1 and $r2 shown in Fig. 5(b). The 
axis of $r2 is the intersection of two planes PR2R3 and PR4R5. The parameter equation for the 
axis of $r2 is 

N1 · [x-xo1, y-yo1, z-zo1] = 0 

 N2 · [x-xo2, y-yo2, z-zo2] = 0  (5) 

where N1 and N2 denote the normal vector of the plane PR2R3 (N1 · S2 = N1 · S3 = 0) and plane 
PR4R5 (N2 · S4 = N2 · S5 = 0), respectively. Similar to the 5-RRR(RR), five $r2 and $r1 are six 
linear independent screws. So the selection of base actuators is feasible. 
Note that, there is a obviously difference between the 5-(RRR)(RR) with the other two 
manipulators. For 5-RRR(RR) and 5-(RRR)RR, the constrained translation is always along 
the z-axis under different configurations. However, for the manipulator 5-(RRR)(RR), the 
direction of constrained translation is different under different configurations. As shown in 
Eq.(3), it always passes through O1 and O2. The characteristic makes it be unique in 
currently existing 5-DoF FSPMs. 

3. Prototype 
A prototype is manufactured to verify the kinematic analysis and comparing the motion 
capacity of a human-spine and the prototype (Zhu, 2007). Considering that it is easy to 
guarantee parallelism than intersection at a common point in machining, 5-RRR(RR) is 
adopted as the manipulator prototype.  

3.1 Structure 
As mentioned in section 2.1, the axes for three joints adjacent to the base in one limb are 
parallel and the other two intersect at a common point. For the convenient to guarantee the 
machining accuracy, the prototype structure parameters are designed with special values.  
The axes of three joints adjacent to the base are designed to be perpendicular to the base 
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platform to guarantee the parallelism. The axis of R4 is perpendicular to that of R3. Five arc 
links are manufactured through cutting a cylindrical ring averagely after drilling ten holes 
with indexing plate. One big and 15 small hole are drilled for lightening the movable 
platform. To avoid actuator singularity mentioned in section 2.1, limb are assembled as 
shown in the Fig. 4 

 
Fig. 6. 3-D model of the prototype 

Diameters for movable and base platform are 109mm and 200mm. The length of both links 
connecting joints R1 and R2, R2 and R3 are 44mm. To allow each arc-link rotate around axis 
of R5 freely, the radian of the arc-link is 24 degrees. Five stepper motor controlled by a 
motion control card actuate five R1, respectively.  The minimize step of the stepper motor  is 
0.018 degree under the cooperation with motion control card. 

3.2 Reachable workspace 
 

 
 
Fig. 7.  Translation and rotation simulation of the prototype 
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Fig. 8. Translation of prototype 
 

 
Fig.9. Rotation of prototype 

According to the simulation, the reachable positions form a circle similar with a pentagon. 
The max translational distance is 89 mm, 44.5% of the diameter of the base. However, the 
max translation of the prototype is about 75mm because of interference. The rotation angles 
of the prototype around x-axis, y-axis and z-axis are 48, 48 and 66 degrees which is similar 
with the simulation. The motion of  a spine is mainly realized by cervical spine, thoracic 
spine and lumbar spine. Considering rotation ability, cervical spine is the strongest (123, 61 
and 77 degrees); the lumbar spine is the weakest (74, 29 and 9 degrees). Comparing with the 
three parts of human spine, the rotation ability of the prototype is similar to the thoracic 
spine, whose rotation angles are 76, 76 and 71 degrees, respectively. 
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5. Future work 
Although mobility and kinematical performance closed to isotropy are realized through 5-
DoF FSPM with base-actuator, there are still several aspects to be improved for further 
simulation capacity for the spine motion.  
(a) Enlarge the reachable workspace. The reachable workspace of the prototype is smaller 
than that of human spine except the rotation around z-axis (yaw). Such a problem may be 
solved by rearranging the five R4. Immature hypotheses include, 1. arranging them in both 
sides of the movable ring platform, such as two inside and three outside; 2. Control link 
connecting R3 and R4 rotating within 180 degree instead of 360 degree through better 
trajectory plan to prevent link interference, which may enlarge the rotation angles around x-
axis and y-axis to about 96 degree.  
(b) Reaction time. The manipulator structure should be redesigned to ensure and improve 
the reaction time of the manipulator. 
(c) Mechanics analysis. As mentioned in the literature, spine for human being may work 
under passive mode, in which passive force and torque should be calculated and evaluated 
under outside load. Hence, to simulate the bio-mechanics, static and dynamic behavior 
should be researched. 
(d) Simulate with 5-(RRR)(RR) to make use of its unique characteristic. 

6. Conclusion 
Considering the characteristics of a human spine including nearly isotropic kinematical 
performance, fast speed, available under both active and passive modes and reachable 
workspace, three 3R2T 5-DoF fully-symmetrical parallel manipulators with base-actuator, 
including 5-RRR(RR), 5-(RRR)RR, 5-(RRR)(RR) are adopted as feasible human spine motion 
simulators. To decrease machining difficulty and guarantee the machining precision, 5-
RRR(RR) is designed and manufactured as the prototype of spine motion simulator. After 
comparing reachable workspace of the prototype and that of human spine, the future work 
are planned for further improving simulation capacity of the prototype. 
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